age: mitigate multi-key attacks on ChaCha20Poly1305

It's possible to craft ChaCha20Poly1305 ciphertexts that decrypt under
multiple keys. (I know, it's wild.)

The impact is different for different recipients, but in general only
applies to Chosen Ciphertext Attacks against online decryption oracles:

* With the scrypt recipient, it lets the attacker make a recipient
  stanza that decrypts with multiple passwords, speeding up a bruteforce
  in terms of oracle queries (but not scrypt work, which can be
  precomputed) to logN by binary search.

  Limiting the ciphertext size limits the keys to two, which makes this
  acceptable: it's a loss of only one bit of security in a scenario
  (online decryption oracles) that is not recommended.

* With the X25519 recipient, it lets the attacker search for accepted
  public keys without using multiple recipient stanzas in the message.
  That lets the attacker bypass the 20 recipients limit (which was not
  actually intended to defend against deanonymization attacks).

  This is not really in the threat model for age: we make no attempt to
  provide anonymity in an online CCA scenario.

  Anyway, limiting the keys to two by enforcing short ciphertexts
  mitigates the attack: it only lets the attacker test 40 keys per
  message instead of 20.

* With the ssh-ed25519 recipient, the attack should be irrelevant, since
  the recipient stanza includes a 32-bit hash of the public key, making
  it decidedly not anonymous.

  Also to avoid breaking the abstraction in the agessh package, we don't
  mitigate the attack for this recipient, but we document the lack of
  anonymity.

This was reported by Paul Grubbs in the context of the upcoming paper
"Partitioning Oracle Attacks", USENIX Security 2021 (to appear), by
Julia Len, Paul Grubbs, and Thomas Ristenpart.
This commit is contained in:
Filippo Valsorda
2020-09-19 18:18:59 +02:00
parent 07c72f3b69
commit 2194f6962c
10 changed files with 94 additions and 28 deletions

9
age.go
View File

@@ -66,6 +66,9 @@ type Stanza struct {
Body []byte
}
const fileKeySize = 16
const streamNonceSize = 16
// Encrypt returns a WriteCloser. Writes to the returned value are encrypted and
// written to dst as an age file. Every recipient will be able to decrypt the file.
//
@@ -76,7 +79,7 @@ func Encrypt(dst io.Writer, recipients ...Recipient) (io.WriteCloser, error) {
return nil, errors.New("no recipients specified")
}
fileKey := make([]byte, 16)
fileKey := make([]byte, fileKeySize)
if _, err := rand.Read(fileKey); err != nil {
return nil, err
}
@@ -102,7 +105,7 @@ func Encrypt(dst io.Writer, recipients ...Recipient) (io.WriteCloser, error) {
return nil, fmt.Errorf("failed to write header: %v", err)
}
nonce := make([]byte, 16)
nonce := make([]byte, streamNonceSize)
if _, err := rand.Read(nonce); err != nil {
return nil, err
}
@@ -173,7 +176,7 @@ RecipientsLoop:
return nil, errors.New("bad header MAC")
}
nonce := make([]byte, 16)
nonce := make([]byte, streamNonceSize)
if _, err := io.ReadFull(payload, nonce); err != nil {
return nil, fmt.Errorf("failed to read nonce: %v", err)
}

View File

@@ -5,11 +5,14 @@
// https://developers.google.com/open-source/licenses/bsd
// Package agessh provides age.Identity and age.Recipient implementations of
// types "ssh-rsa" and "ssh-ed25519", which allow reusing existing SSH key files
// for encryption with age-encryption.org/v1.
// types "ssh-rsa" and "ssh-ed25519", which allow reusing existing SSH keys for
// encryption with age-encryption.org/v1.
//
// These should only be used for compatibility with existing keys, and native
// X25519 keys should be preferred otherwise.
// These recipient types should only be used for compatibility with existing
// keys, and native X25519 keys should be preferred otherwise.
//
// Note that these recipient types are not anonymous: the encrypted message will
// include a short 32-bit ID of the public key,
package agessh
import (
@@ -346,6 +349,12 @@ func (i *Ed25519Identity) Unwrap(block *age.Stanza) ([]byte, error) {
}
// aeadEncrypt and aeadDecrypt are copied from package age.
//
// They don't limit the file key size because multi-key attacks are irrelevant
// against the ssh-ed25519 recipient. Being an asymmetric recipient, it would
// only allow a more efficient search for accepted public keys against a
// decryption oracle, but the ssh-X recipients are not anonymous (they have a
// short recipient hash).
func aeadEncrypt(key, plaintext []byte) ([]byte, error) {
aead, err := chacha20poly1305.New(key)

View File

@@ -20,13 +20,20 @@ func TestVectors(t *testing.T) {
files, _ := filepath.Glob("testdata/*.age")
for _, f := range files {
name := strings.TrimSuffix(strings.TrimPrefix(f, "testdata/"), ".age")
expectFailure := strings.HasPrefix(name, "fail_")
t.Run(name, func(t *testing.T) {
identities, err := parseIdentitiesFile("testdata/" + name + "_key.txt")
var identities []age.Identity
ids, err := parseIdentitiesFile("testdata/" + name + "_key.txt")
if err == nil {
identities = append(identities, ids...)
}
password, err := ioutil.ReadFile("testdata/" + name + "_password.txt")
if err == nil {
i, err := age.NewScryptIdentity(string(password))
if err != nil {
t.Fatal(err)
}
for _, i := range identities {
t.Logf("%s", i.Type())
identities = append(identities, i)
}
in, err := os.Open("testdata/" + name + ".age")
@@ -34,6 +41,11 @@ func TestVectors(t *testing.T) {
t.Fatal(err)
}
r, err := age.Decrypt(in, identities...)
if expectFailure {
if err == nil {
t.Fatal("expected Decrypt failure")
}
} else {
if err != nil {
t.Fatal(err)
}
@@ -42,6 +54,7 @@ func TestVectors(t *testing.T) {
t.Fatal(err)
}
t.Logf("%s", out)
}
})
}
}

View File

@@ -0,0 +1,6 @@
age-encryption.org/v1
-> scrypt qeKad+OgIkBbr/ndSa7J3Q 1
C2tmV7/uZjRafxqaQd1JhYkM2KxuHHBy3/d2dJNEZEh8rZCqYfvE/eJUXqiqZsZa
6kWgG1qa6Q6sXPz0vIIpYHGf4gzxG9oTVonMke2kHC4
--- FQeacPQobvFBd0tuIQnQDd/NEDR4G4MfylkXiq9ZqZ0
<EFBFBD><EFBFBD><EFBFBD>p<EFBFBD><EFBFBD>t<18>t<EFBFBD><74><EFBFBD>3q<33><71>)<29><><EFBFBD><EFBFBD>v<EFBFBD><0F>Q<EFBFBD>o̚K<CC9A><4B>7<EFBFBD><17>)<29>%a

View File

@@ -0,0 +1 @@
dog-old-little-breeze-novel-razor-battle-replace-lake-horse

View File

@@ -0,0 +1,6 @@
age-encryption.org/v1
-> X25519 /Gt0E6JT7yuYHlwsGW5LbpEEJawOc+QMeMAS+hoOIgw
XU/4Zkz4MksDhge0kosiMTJF8tHnOP0ZSi+6aaMqLMS1PlMIs95nKz3H7JGesTwA
tsxuQrj+TuoGouNB1O0VshA9vsHGurn0Dtw5e7bkw9Q
--- jQNSF6blozj2QFYJ/2iqy0wUcPuz/8vCS7RgKH8wjNI
<14>9<EFBFBD><39><EFBFBD>y<EFBFBD>_<><5F>R\<03><>m\<5C><><EFBFBD>Uv6Qȶ<51><15>mK<6D>a<EFBFBD><61><EFBFBD>v<EFBFBD><76><EFBFBD>2

View File

@@ -0,0 +1,3 @@
# created: 2020-09-19T18:42:11+02:00
# public key: age1uc8zlurjyjpenrslc2thyl28u7ylz6x8c2g9yphvjha6xm8ppf3slq0l25
AGE-SECRET-KEY-1D8JAD8SXNFVQEFHAUNNAX4QCE3K5CUKMT7YYHNGTUSSP97YGWL4STV89UH

View File

@@ -9,6 +9,7 @@ package age
import (
"crypto/hmac"
"crypto/sha256"
"fmt"
"io"
"filippo.io/age/internal/format"
@@ -16,6 +17,7 @@ import (
"golang.org/x/crypto/hkdf"
)
// aeadEncrypt encrypts a message with a one-time key.
func aeadEncrypt(key, plaintext []byte) ([]byte, error) {
aead, err := chacha20poly1305.New(key)
if err != nil {
@@ -30,11 +32,19 @@ func aeadEncrypt(key, plaintext []byte) ([]byte, error) {
return aead.Seal(nil, nonce, plaintext, nil), nil
}
func aeadDecrypt(key, ciphertext []byte) ([]byte, error) {
// aeadDecrypt decrypts a message of an expected fixed size.
//
// The message size is limited to mitigate multi-key attacks, where a ciphertext
// can be crafted that decrypts successfully under multiple keys. Short
// ciphertexts can only target two keys, which has limited impact.
func aeadDecrypt(key []byte, size int, ciphertext []byte) ([]byte, error) {
aead, err := chacha20poly1305.New(key)
if err != nil {
return nil, err
}
if len(ciphertext) != size+aead.Overhead() {
return nil, fmt.Errorf("encrypted message has unexpected length")
}
nonce := make([]byte, chacha20poly1305.NonceSize)
return aead.Open(nil, nonce, ciphertext, nil)
}

View File

@@ -19,7 +19,8 @@ import (
const scryptLabel = "age-encryption.org/v1/scrypt"
// ScryptRecipient is a password-based recipient.
// ScryptRecipient is a password-based recipient. Anyone with the password can
// decrypt the message.
//
// If a ScryptRecipient is used, it must be the only recipient for the file: it
// can't be mixed with other recipient types and can't be used multiple times
@@ -60,8 +61,10 @@ func (r *ScryptRecipient) SetWorkFactor(logN int) {
r.workFactor = logN
}
const scryptSaltSize = 16
func (r *ScryptRecipient) Wrap(fileKey []byte) (*Stanza, error) {
salt := make([]byte, 16)
salt := make([]byte, scryptSaltSize)
if _, err := rand.Read(salt[:]); err != nil {
return nil, err
}
@@ -133,7 +136,7 @@ func (i *ScryptIdentity) Unwrap(block *Stanza) ([]byte, error) {
if err != nil {
return nil, fmt.Errorf("failed to parse scrypt salt: %v", err)
}
if len(salt) != 16 {
if len(salt) != scryptSaltSize {
return nil, errors.New("invalid scrypt recipient block")
}
logN, err := strconv.Atoi(block.Args[1])
@@ -153,7 +156,14 @@ func (i *ScryptIdentity) Unwrap(block *Stanza) ([]byte, error) {
return nil, fmt.Errorf("failed to generate scrypt hash: %v", err)
}
fileKey, err := aeadDecrypt(k, block.Body)
// This AEAD is not robust, so an attacker could craft a message that
// decrypts under two different keys (meaning two different passphrases) and
// then use an error side-channel in an online decryption oracle to learn if
// either key is correct. This is deemed acceptable because the usa case (an
// online decryption oracle) is not recommended, and the security loss is
// only one bit. This also does not bypass any scrypt work, but that work
// can be precomputed in an online oracle scenario.
fileKey, err := aeadDecrypt(k, fileKeySize, block.Body)
if err != nil {
return nil, ErrIncorrectIdentity
}

View File

@@ -23,7 +23,11 @@ import (
const x25519Label = "age-encryption.org/v1/X25519"
// X25519Recipient is the standard age public key, based on a Curve25519 point.
// X25519Recipient is the standard age public key. Messages encrypted to this
// recipient can be decrypted with the corresponding X25519Identity.
//
// This recipient is anonymous, in the sense that an attacker can't tell from
// the message alone if it is encrypted to a certain recipient.
type X25519Recipient struct {
theirPublicKey []byte
}
@@ -105,7 +109,8 @@ func (r *X25519Recipient) String() string {
return s
}
// X25519Identity is the standard age private key, based on a Curve25519 scalar.
// X25519Identity is the standard age private key, which can decrypt messages
// encrypted to the corresponding X25519Recipient.
type X25519Identity struct {
secretKey, ourPublicKey []byte
}
@@ -136,7 +141,7 @@ func GenerateX25519Identity() (*X25519Identity, error) {
return newX25519IdentityFromScalar(secretKey)
}
// ParseX25519Identity returns a new X25519Recipient from a Bech32 private key
// ParseX25519Identity returns a new X25519Identity from a Bech32 private key
// encoding with the "AGE-SECRET-KEY-1" prefix.
func ParseX25519Identity(s string) (*X25519Identity, error) {
t, k, err := bech32.Decode(s)
@@ -182,7 +187,7 @@ func (i *X25519Identity) Unwrap(block *Stanza) ([]byte, error) {
return nil, err
}
fileKey, err := aeadDecrypt(wrappingKey, block.Body)
fileKey, err := aeadDecrypt(wrappingKey, fileKeySize, block.Body)
if err != nil {
return nil, ErrIncorrectIdentity
}