mirror of
https://github.com/FiloSottile/age.git
synced 2025-12-23 05:25:14 +00:00
It's possible to craft ChaCha20Poly1305 ciphertexts that decrypt under multiple keys. (I know, it's wild.) The impact is different for different recipients, but in general only applies to Chosen Ciphertext Attacks against online decryption oracles: * With the scrypt recipient, it lets the attacker make a recipient stanza that decrypts with multiple passwords, speeding up a bruteforce in terms of oracle queries (but not scrypt work, which can be precomputed) to logN by binary search. Limiting the ciphertext size limits the keys to two, which makes this acceptable: it's a loss of only one bit of security in a scenario (online decryption oracles) that is not recommended. * With the X25519 recipient, it lets the attacker search for accepted public keys without using multiple recipient stanzas in the message. That lets the attacker bypass the 20 recipients limit (which was not actually intended to defend against deanonymization attacks). This is not really in the threat model for age: we make no attempt to provide anonymity in an online CCA scenario. Anyway, limiting the keys to two by enforcing short ciphertexts mitigates the attack: it only lets the attacker test 40 keys per message instead of 20. * With the ssh-ed25519 recipient, the attack should be irrelevant, since the recipient stanza includes a 32-bit hash of the public key, making it decidedly not anonymous. Also to avoid breaking the abstraction in the agessh package, we don't mitigate the attack for this recipient, but we document the lack of anonymity. This was reported by Paul Grubbs in the context of the upcoming paper "Partitioning Oracle Attacks", USENIX Security 2021 (to appear), by Julia Len, Paul Grubbs, and Thomas Ristenpart.