Files
object-browser/pkg/auth/token.go
Lenin Alevski c0ee739624 IV generation for ChaCha20 poly auth scheme (#283)
Generate 16 bytes IV instead of an IV of 32 bytes (and then use half of it) when using ChaCha20 to
encrypt tokens, this is to prevent tokens to become malleable.
2020-09-22 10:49:34 -07:00

324 lines
9.5 KiB
Go

// This file is part of MinIO Console Server
// Copyright (c) 2020 MinIO, Inc.
//
// This program is free software: you can redistribute it and/or modify
// it under the terms of the GNU Affero General Public License as published by
// the Free Software Foundation, either version 3 of the License, or
// (at your option) any later version.
//
// This program is distributed in the hope that it will be useful,
// but WITHOUT ANY WARRANTY; without even the implied warranty of
// MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
// GNU Affero General Public License for more details.
//
// You should have received a copy of the GNU Affero General Public License
// along with this program. If not, see <http://www.gnu.org/licenses/>.
package auth
import (
"bytes"
"crypto/aes"
"crypto/cipher"
"crypto/hmac"
"crypto/sha1"
"crypto/sha256"
"encoding/base64"
"errors"
"fmt"
"io"
"io/ioutil"
"log"
"net/http"
"strings"
"github.com/go-openapi/swag"
"github.com/minio/console/models"
"github.com/minio/console/pkg/auth/token"
"github.com/minio/minio-go/v7/pkg/credentials"
"github.com/secure-io/sio-go/sioutil"
"golang.org/x/crypto/chacha20"
"golang.org/x/crypto/chacha20poly1305"
"golang.org/x/crypto/pbkdf2"
)
var (
errNoAuthToken = errors.New("session token missing")
errReadingToken = errors.New("session token internal data is malformed")
errClaimsFormat = errors.New("encrypted session token claims not in the right format")
errorGeneric = errors.New("an error has occurred")
)
// derivedKey is the key used to encrypt the session token claims, its derived using pbkdf on CONSOLE_PBKDF_PASSPHRASE with CONSOLE_PBKDF_SALT
var derivedKey = pbkdf2.Key([]byte(token.GetPBKDFPassphrase()), []byte(token.GetPBKDFSalt()), 4096, 32, sha1.New)
// IsSessionTokenValid returns true or false depending if the provided session token is valid or not
func IsSessionTokenValid(token string) bool {
_, err := SessionTokenAuthenticate(token)
return err == nil
}
// DecryptedClaims claims struct for decrypted credentials
type DecryptedClaims struct {
AccessKeyID string
SecretAccessKey string
SessionToken string
Actions []string
}
// SessionTokenAuthenticate takes a session token, decode it, extract claims and validate the signature
// if the session token claims are valid we proceed to decrypt the information inside
//
// returns claims after validation in the following format:
//
// type DecryptedClaims struct {
// AccessKeyID
// SecretAccessKey
// SessionToken
// }
func SessionTokenAuthenticate(token string) (*DecryptedClaims, error) {
if token == "" {
return nil, errNoAuthToken
}
// decrypt encrypted token
claimTokens, err := decryptClaims(token)
if err != nil {
// we print decryption token error information for debugging purposes
log.Println(err)
// we return a generic error that doesn't give any information to attackers
return nil, errReadingToken
}
// claimsTokens contains the decrypted JWT for Console
return claimTokens, nil
}
// NewEncryptedTokenForClient generates a new session token with claims based on the provided STS credentials, first
// encrypts the claims and the sign them
func NewEncryptedTokenForClient(credentials *credentials.Value, actions []string) (string, error) {
if credentials != nil {
encryptedClaims, err := encryptClaims(credentials.AccessKeyID, credentials.SecretAccessKey, credentials.SessionToken, actions)
if err != nil {
return "", err
}
return encryptedClaims, nil
}
return "", errors.New("provided credentials are empty")
}
// encryptClaims() receives the STS claims, concatenate them and encrypt them using AES-GCM
// returns a base64 encoded ciphertext
func encryptClaims(accessKeyID, secretAccessKey, sessionToken string, actions []string) (string, error) {
payload := []byte(fmt.Sprintf("%s#%s#%s#%s", accessKeyID, secretAccessKey, sessionToken, strings.Join(actions, ",")))
ciphertext, err := encrypt(payload, []byte{})
if err != nil {
log.Println(err)
return "", errorGeneric
}
return base64.StdEncoding.EncodeToString(ciphertext), nil
}
// decryptClaims() receives base64 encoded ciphertext, decode it, decrypt it (AES-GCM) and produces a *DecryptedClaims object
func decryptClaims(ciphertext string) (*DecryptedClaims, error) {
decoded, err := base64.StdEncoding.DecodeString(ciphertext)
if err != nil {
log.Println(err)
return nil, errClaimsFormat
}
plaintext, err := decrypt(decoded, []byte{})
if err != nil {
log.Println(err)
return nil, errClaimsFormat
}
s := strings.Split(string(plaintext), "#")
// Validate that the decrypted string has the right format "accessKeyID:secretAccessKey:sessionToken"
if len(s) != 4 {
return nil, errClaimsFormat
}
accessKeyID, secretAccessKey, sessionToken, actions := s[0], s[1], s[2], s[3]
actionsList := strings.Split(actions, ",")
return &DecryptedClaims{
AccessKeyID: accessKeyID,
SecretAccessKey: secretAccessKey,
SessionToken: sessionToken,
Actions: actionsList,
}, nil
}
const (
aesGcm = 0x00
c20p1305 = 0x01
)
// Encrypt a blob of data using AEAD scheme, AES-GCM if the executing CPU
// provides AES hardware support, otherwise will use ChaCha20-Poly1305
// with a pbkdf2 derived key, this function should be used to encrypt a session
// or data key provided as plaintext.
//
// The returned ciphertext data consists of:
// AEAD ID | iv | nonce | encrypted data
// 1 16 12 ~ len(data)
func encrypt(plaintext, associatedData []byte) ([]byte, error) {
iv, err := sioutil.Random(16) // 16 bytes IV
if err != nil {
return nil, err
}
var algorithm byte
if sioutil.NativeAES() {
algorithm = aesGcm
} else {
algorithm = c20p1305
}
var aead cipher.AEAD
switch algorithm {
case aesGcm:
mac := hmac.New(sha256.New, derivedKey)
mac.Write(iv)
sealingKey := mac.Sum(nil)
var block cipher.Block
block, err = aes.NewCipher(sealingKey)
if err != nil {
return nil, err
}
aead, err = cipher.NewGCM(block)
if err != nil {
return nil, err
}
case c20p1305:
var sealingKey []byte
sealingKey, err = chacha20.HChaCha20(derivedKey, iv) // HChaCha20 expects nonce of 16 bytes
if err != nil {
return nil, err
}
aead, err = chacha20poly1305.New(sealingKey)
if err != nil {
return nil, err
}
}
nonce, err := sioutil.Random(aead.NonceSize())
if err != nil {
return nil, err
}
sealedBytes := aead.Seal(nil, nonce, plaintext, associatedData)
// ciphertext = AEAD ID | iv | nonce | sealed bytes
var buf bytes.Buffer
buf.WriteByte(algorithm)
buf.Write(iv)
buf.Write(nonce)
buf.Write(sealedBytes)
return buf.Bytes(), nil
}
// Decrypts a blob of data using AEAD scheme AES-GCM if the executing CPU
// provides AES hardware support, otherwise will use ChaCha20-Poly1305with
// and a pbkdf2 derived key
func decrypt(ciphertext []byte, associatedData []byte) ([]byte, error) {
var (
algorithm [1]byte
iv [16]byte
nonce [12]byte // This depends on the AEAD but both used ciphers have the same nonce length.
)
r := bytes.NewReader(ciphertext)
if _, err := io.ReadFull(r, algorithm[:]); err != nil {
return nil, err
}
if _, err := io.ReadFull(r, iv[:]); err != nil {
return nil, err
}
if _, err := io.ReadFull(r, nonce[:]); err != nil {
return nil, err
}
var aead cipher.AEAD
switch algorithm[0] {
case aesGcm:
mac := hmac.New(sha256.New, derivedKey)
mac.Write(iv[:])
sealingKey := mac.Sum(nil)
block, err := aes.NewCipher(sealingKey[:])
if err != nil {
return nil, err
}
aead, err = cipher.NewGCM(block)
if err != nil {
return nil, err
}
case c20p1305:
sealingKey, err := chacha20.HChaCha20(derivedKey, iv[:]) // HChaCha20 expects nonce of 16 bytes
if err != nil {
return nil, err
}
aead, err = chacha20poly1305.New(sealingKey)
if err != nil {
return nil, err
}
default:
return nil, fmt.Errorf("invalid algorithm: %v", algorithm)
}
if len(nonce) != aead.NonceSize() {
return nil, fmt.Errorf("invalid nonce size %d, expected %d", len(nonce), aead.NonceSize())
}
sealedBytes, err := ioutil.ReadAll(r)
if err != nil {
return nil, err
}
plaintext, err := aead.Open(nil, nonce[:], sealedBytes, associatedData)
if err != nil {
return nil, err
}
return plaintext, nil
}
// GetTokenFromRequest returns a token from a http Request
// either defined on a cookie `token` or on Authorization header.
//
// Authorization Header needs to be like "Authorization Bearer <token>"
func GetTokenFromRequest(r *http.Request) (*string, error) {
// Get Auth token
var reqToken string
// Token might come either as a Cookie or as a Header
// if not set in cookie, check if it is set on Header.
tokenCookie, err := r.Cookie("token")
if err != nil {
headerToken := r.Header.Get("Authorization")
// reqToken should come as "Bearer <token>"
splitHeaderToken := strings.Split(headerToken, "Bearer")
if len(splitHeaderToken) <= 1 {
return nil, errNoAuthToken
}
reqToken = strings.TrimSpace(splitHeaderToken[1])
} else {
reqToken = strings.TrimSpace(tokenCookie.Value)
}
return swag.String(reqToken), nil
}
func GetClaimsFromTokenInRequest(req *http.Request) (*models.Principal, error) {
sessionID, err := GetTokenFromRequest(req)
if err != nil {
return nil, err
}
// Perform decryption of the session token, if Console is able to decrypt the session token that means a valid session
// was used in the first place to get it
claims, err := SessionTokenAuthenticate(*sessionID)
if err != nil {
return nil, err
}
return &models.Principal{
AccessKeyID: claims.AccessKeyID,
Actions: claims.Actions,
SecretAccessKey: claims.SecretAccessKey,
SessionToken: claims.SessionToken,
}, nil
}