Files
redoctober/keycache/keycache.go
Andrew Buss 24fc3bb7d8 Fix "invalid key size 0" when decrypting after a delegation expires
The keycache does not remove active delegations when uses drops to zero;
rather it only removes these when Refresh is called.

So Valid returns true even if the user's delegation has expired,
so fullMatch is not set to false in unwrapKey,
so DecryptKey fails since the keycache refreshes and finds the delegation has expired,
so tmpKeyValue is left empty and decryptErr is set.

Since decryptErr is only used to break out of the inner loop, and
fullMatch wasn't set to false, no error is returned from unwrapKey.
So aesKey in DecryptKey is an empty string, causing an error when
passed to aes.NewCipher.

This commit actively removes a delegation from the keycache when it
is used for the last time, and properly handles errors thrown by
DecryptKey in unwrapKey.
2015-12-04 02:15:53 -08:00

308 lines
7.6 KiB
Go

// Package keycache provides the ability to hold active keys in memory
// for the Red October server.
//
// Copyright (c) 2013 CloudFlare, Inc.
package keycache
import (
"crypto/aes"
"crypto/ecdsa"
"crypto/rand"
"crypto/rsa"
"crypto/sha1"
"errors"
"fmt"
"log"
"time"
"github.com/cloudflare/redoctober/ecdh"
"github.com/cloudflare/redoctober/passvault"
)
// DelegateIndex is used to index the map of currently delegated keys.
// This is necessary to provide a way for a delegator to provide multiple
// delegations. It is also used to avoid the complexity of string parsing
// and enforcement of username and slot character requirements.
type DelegateIndex struct {
Name string
Slot string
}
// Usage holds the permissions of a delegated permission
type Usage struct {
Uses int // Number of uses delegated
Labels []string // File labels allowed to decrypt
Users []string // Set of users allows to decrypt
Expiry time.Time // Expiration of usage
}
// ActiveUser holds the information about an actively delegated key.
type ActiveUser struct {
Usage
Admin bool
Type string
rsaKey rsa.PrivateKey
eccKey *ecdsa.PrivateKey
}
// Cache represents the current list of delegated keys in memory
type Cache struct {
UserKeys map[DelegateIndex]ActiveUser
}
// matchesLabel returns true if this usage applies the user and label
// an empty array of Users indicates that all users are valid
func (usage Usage) matchesLabel(labels []string) bool {
// if asset has no labels always match
if len(labels) == 0 {
return true
}
for _, validLabel := range usage.Labels {
for _, label := range labels {
if label == validLabel {
return true
}
}
}
return false
}
// matches returns true if this usage applies the user and label
// an empty array of Users indicates that all users are valid
func (usage Usage) matches(user string, labels []string) bool {
if !usage.matchesLabel(labels) {
return false
}
// if usage lists no users, always match
if len(usage.Users) == 0 {
return true
}
for _, validUser := range usage.Users {
if user == validUser {
return true
}
}
return false
}
// NewCache initalizes a new cache.
func NewCache() Cache {
return Cache{make(map[DelegateIndex]ActiveUser)}
}
// setUser takes an ActiveUser and adds it to the cache.
func (cache *Cache) setUser(in ActiveUser, name, slot string) {
cache.UserKeys[DelegateIndex{Name: name, Slot: slot}] = in
}
// Valid returns true if matching active user is present.
func (cache *Cache) Valid(name, user string, labels []string) (present bool) {
for d, key := range cache.UserKeys {
if d.Name != name {
continue
}
if key.Usage.matches(user, labels) {
return true
}
}
return false
}
// MatchUser returns the matching active user if present
// and a boolean to indicate its presence.
func (cache *Cache) MatchUser(name, user string, labels []string) (ActiveUser, string, bool) {
var key ActiveUser
for d, key := range cache.UserKeys {
if d.Name != name {
continue
}
if key.Usage.matches(user, labels) {
return key, d.Slot, true
}
}
return key, "", false
}
// useKey decrements the counter on an active key
// for decryption or symmetric encryption
func (cache *Cache) useKey(name, user, slot string, labels []string) {
if val, slot, present := cache.MatchUser(name, user, labels); present {
val.Usage.Uses -= 1
if val.Usage.Uses <= 0 {
delete(cache.UserKeys, DelegateIndex{name, slot})
} else {
cache.setUser(val, name, slot)
}
}
}
// GetSummary returns the list of active user keys.
func (cache *Cache) GetSummary() map[string]ActiveUser {
summaryData := make(map[string]ActiveUser)
for d, activeUser := range cache.UserKeys {
summaryInfo := d.Name
if d.Slot != "" {
summaryInfo = fmt.Sprintf("%s-%s", d.Name, d.Slot)
}
summaryData[summaryInfo] = activeUser
}
return summaryData
}
// FlushCache removes all delegated keys.
func (cache *Cache) FlushCache() {
for d := range cache.UserKeys {
delete(cache.UserKeys, d)
}
}
// Refresh purges all expired or used up keys.
func (cache *Cache) Refresh() {
for d, active := range cache.UserKeys {
if active.Usage.Expiry.Before(time.Now()) {
log.Println("Record expired", d.Name, d.Slot, active.Usage.Users, active.Usage.Labels, active.Usage.Expiry)
delete(cache.UserKeys, d)
}
}
}
// AddKeyFromRecord decrypts a key for a given record and adds it to the cache.
func (cache *Cache) AddKeyFromRecord(record passvault.PasswordRecord, name, password string, users, labels []string, uses int, slot, durationString string) (err error) {
var current ActiveUser
cache.Refresh()
// compute exipiration
duration, err := time.ParseDuration(durationString)
if err != nil {
return
}
current.Usage.Uses = uses
current.Usage.Expiry = time.Now().Add(duration)
current.Usage.Users = users
current.Usage.Labels = labels
// get decryption keys
switch record.Type {
case passvault.RSARecord:
current.rsaKey, err = record.GetKeyRSA(password)
case passvault.ECCRecord:
current.eccKey, err = record.GetKeyECC(password)
default:
err = errors.New("Unknown record type")
}
if err != nil {
return
}
// set types
current.Type = record.Type
current.Admin = record.Admin
// add current to map (overwriting previous for this name)
cache.setUser(current, name, slot)
return
}
// DecryptKey decrypts a 16 byte key using the key corresponding to the name parameter
// For RSA and EC keys, the cached RSA/EC key is used to decrypt
// the pubEncryptedKey which is then used to decrypt the input
// buffer.
func (cache *Cache) DecryptKey(in []byte, name, user string, labels []string, pubEncryptedKey []byte) (out []byte, err error) {
cache.Refresh()
decryptKey, slot, ok := cache.MatchUser(name, user, labels)
if !ok {
return nil, errors.New("Key not delegated")
}
var aesKey []byte
// pick the aesKey to use for decryption
switch decryptKey.Type {
case passvault.RSARecord:
// extract the aes key from the pubEncryptedKey
aesKey, err = rsa.DecryptOAEP(sha1.New(), rand.Reader, &decryptKey.rsaKey, pubEncryptedKey, nil)
if err != nil {
return out, err
}
case passvault.ECCRecord:
// extract the aes key from the pubEncryptedKey
aesKey, err = ecdh.Decrypt(decryptKey.eccKey, pubEncryptedKey)
if err != nil {
return out, err
}
default:
return nil, errors.New("unknown type")
}
// decrypt
aesSession, err := aes.NewCipher(aesKey)
if err != nil {
return out, err
}
out = make([]byte, 16)
aesSession.Decrypt(out, in)
cache.useKey(name, user, slot, labels)
return
}
// DecryptShares decrypts an array of 16 byte shares using the key corresponding
// to the name parameter.
func (cache *Cache) DecryptShares(in [][]byte, name, user string, labels []string, pubEncryptedKey []byte) (out [][]byte, err error) {
cache.Refresh()
decryptKey, slot, ok := cache.MatchUser(name, user, labels)
if !ok {
return nil, errors.New("Key not delegated")
}
var aesKey []byte
// pick the aesKey to use for decryption
switch decryptKey.Type {
case passvault.RSARecord:
// extract the aes key from the pubEncryptedKey
aesKey, err = rsa.DecryptOAEP(sha1.New(), rand.Reader, &decryptKey.rsaKey, pubEncryptedKey, nil)
if err != nil {
return
}
case passvault.ECCRecord:
// extract the aes key from the pubEncryptedKey
aesKey, err = ecdh.Decrypt(decryptKey.eccKey, pubEncryptedKey)
if err != nil {
return
}
default:
return nil, errors.New("unknown type")
}
// decrypt
aesSession, err := aes.NewCipher(aesKey)
if err != nil {
return
}
for _, encShare := range in {
tmp := make([]byte, 16)
aesSession.Decrypt(tmp, encShare)
out = append(out, tmp)
}
cache.useKey(name, user, slot, labels)
return
}