Files
redoctober/keycache/keycache.go
Kyle Isom 510b7ba9f6 Implementation of a file-backed persistence store. (#160)
This is a rather large change. It consists of the following changes:

+ Direct access to the keycache has been removed from the core
  package. This forces all interaction with the cache to go
  through the Cryptor, which is required for persistence. The
  Cryptor needs to know when the cache has changed, and the only
  way to do this effectively is to make the Cryptor responsible
  for managing the keycache.

+ A new persist package has been added. This provides a Store
  interface, for which two implementations are provided. The
  first is a null persister: this is used when no persistence
  is configured. The second is a file-backed persistence store.

+ The Cryptor now persists the cache every time it changes.

Additionally, a number of missing returns in a function in the core
package have been added.
2016-08-04 17:12:08 -07:00

373 lines
9.2 KiB
Go

// Package keycache provides the ability to hold active keys in memory
// for the Red October server.
//
// Copyright (c) 2013 CloudFlare, Inc.
package keycache
import (
"crypto/aes"
"crypto/ecdsa"
"crypto/rand"
"crypto/rsa"
"crypto/sha1"
"errors"
"fmt"
"log"
"strings"
"time"
"github.com/cloudflare/redoctober/ecdh"
"github.com/cloudflare/redoctober/passvault"
)
// DelegateIndex is used to index the map of currently delegated keys.
// This is necessary to provide a way for a delegator to provide multiple
// delegations. It is also used to avoid the complexity of string parsing
// and enforcement of username and slot character requirements.
type DelegateIndex struct {
Name string
Slot string
}
// Usage holds the permissions of a delegated permission
type Usage struct {
Uses int // Number of uses delegated
Labels []string // File labels allowed to decrypt
Users []string // Set of users allows to decrypt
Expiry time.Time // Expiration of usage
}
// ActiveUser holds the information about an actively delegated key.
type ActiveUser struct {
Usage
AltNames map[string]string
Admin bool
Type string
rsaKey rsa.PrivateKey
eccKey *ecdsa.PrivateKey
}
// Cache represents the current list of delegated keys in memory
type Cache struct {
UserKeys map[DelegateIndex]ActiveUser
}
// matchesLabel returns true if this usage applies the user and label
// an empty array of Users indicates that all users are valid
func (usage Usage) matchesLabel(labels []string) bool {
// if asset has no labels always match
if len(labels) == 0 {
return true
}
for _, validLabel := range usage.Labels {
for _, label := range labels {
if label == validLabel {
return true
}
}
}
return false
}
// matches returns true if this usage applies the user and label
// an empty array of Users indicates that all users are valid
func (usage Usage) matches(user string, labels []string) bool {
if !usage.matchesLabel(labels) {
return false
}
// if usage lists no users, always match
if len(usage.Users) == 0 {
return true
}
for _, validUser := range usage.Users {
if user == validUser {
return true
}
}
return false
}
// NewCache initalizes a new cache.
func NewCache() Cache {
return Cache{make(map[DelegateIndex]ActiveUser)}
}
// NewFrom takes the output of GetSummary and returns a new keycache.
func NewFrom(summary map[string]ActiveUser) *Cache {
cache := &Cache{make(map[DelegateIndex]ActiveUser)}
for di, user := range summary {
diSplit := strings.SplitN(di, "-", 2)
index := DelegateIndex{
Name: diSplit[0],
}
if len(diSplit) == 2 {
index.Slot = diSplit[1]
}
cache.UserKeys[index] = user
}
return cache
}
// setUser takes an ActiveUser and adds it to the cache.
func (cache *Cache) setUser(in ActiveUser, name, slot string) {
cache.UserKeys[DelegateIndex{Name: name, Slot: slot}] = in
}
// Valid returns true if matching active user is present.
func (cache *Cache) Valid(name, user string, labels []string) (present bool) {
for d, key := range cache.UserKeys {
if d.Name != name {
continue
}
if key.Usage.matches(user, labels) {
return true
}
}
return false
}
// MatchUser returns the matching active user if present
// and a boolean to indicate its presence.
func (cache *Cache) MatchUser(name, user string, labels []string) (ActiveUser, string, bool) {
var key ActiveUser
for d, key := range cache.UserKeys {
if d.Name != name {
continue
}
if key.Usage.matches(user, labels) {
return key, d.Slot, true
}
}
return key, "", false
}
// useKey decrements the counter on an active key
// for decryption or symmetric encryption
func (cache *Cache) useKey(name, user, slot string, labels []string) {
if val, slot, present := cache.MatchUser(name, user, labels); present {
val.Usage.Uses -= 1
if val.Usage.Uses <= 0 {
delete(cache.UserKeys, DelegateIndex{name, slot})
} else {
cache.setUser(val, name, slot)
}
}
}
// GetSummary returns the list of active user keys.
func (cache *Cache) GetSummary() map[string]ActiveUser {
summaryData := make(map[string]ActiveUser)
for d, activeUser := range cache.UserKeys {
summaryInfo := d.Name
if d.Slot != "" {
summaryInfo = fmt.Sprintf("%s-%s", d.Name, d.Slot)
}
summaryData[summaryInfo] = activeUser
}
return summaryData
}
// FlushCache removes all delegated keys. It returns true if the cache
// wasn't empty (i.e. there were active users removed), and false if
// the cache was empty.
func (cache *Cache) Flush() bool {
if len(cache.UserKeys) == 0 {
return false
}
for d := range cache.UserKeys {
delete(cache.UserKeys, d)
}
return true
}
// Refresh purges all expired keys. It returns the number of
// delegations that were removed.
func (cache *Cache) Refresh() int {
var removed int
for d, active := range cache.UserKeys {
if active.Usage.Expiry.Before(time.Now()) {
log.Println("Record expired", d.Name, d.Slot, active.Usage.Users, active.Usage.Labels, active.Usage.Expiry)
removed++
delete(cache.UserKeys, d)
}
}
return removed
}
// AddKeyFromRecord decrypts a key for a given record and adds it to the cache.
func (cache *Cache) AddKeyFromRecord(record passvault.PasswordRecord, name, password string, users, labels []string, uses int, slot, durationString string) (err error) {
var current ActiveUser
cache.Refresh()
// compute exipiration
duration, err := time.ParseDuration(durationString)
if err != nil {
return
}
current.Usage.Uses = uses
current.Usage.Expiry = time.Now().Add(duration)
current.Usage.Users = users
current.Usage.Labels = labels
// get decryption keys
switch record.Type {
case passvault.RSARecord:
current.rsaKey, err = record.GetKeyRSA(password)
case passvault.ECCRecord:
current.eccKey, err = record.GetKeyECC(password)
default:
err = errors.New("Unknown record type")
}
if err != nil {
return
}
// set types
current.Type = record.Type
current.Admin = record.Admin
// add current to map (overwriting previous for this name)
cache.setUser(current, name, slot)
return
}
// DecryptKey decrypts a 16 byte key using the key corresponding to the name parameter
// For RSA and EC keys, the cached RSA/EC key is used to decrypt
// the pubEncryptedKey which is then used to decrypt the input
// buffer.
func (cache *Cache) DecryptKey(in []byte, name, user string, labels []string, pubEncryptedKey []byte) (out []byte, err error) {
cache.Refresh()
decryptKey, slot, ok := cache.MatchUser(name, user, labels)
if !ok {
return nil, errors.New("Key not delegated")
}
var aesKey []byte
// pick the aesKey to use for decryption
switch decryptKey.Type {
case passvault.RSARecord:
// extract the aes key from the pubEncryptedKey
aesKey, err = rsa.DecryptOAEP(sha1.New(), rand.Reader, &decryptKey.rsaKey, pubEncryptedKey, nil)
if err != nil {
return out, err
}
case passvault.ECCRecord:
// extract the aes key from the pubEncryptedKey
aesKey, err = ecdh.Decrypt(decryptKey.eccKey, pubEncryptedKey)
if err != nil {
return out, err
}
default:
return nil, errors.New("unknown type")
}
// decrypt
aesSession, err := aes.NewCipher(aesKey)
if err != nil {
return out, err
}
out = make([]byte, 16)
aesSession.Decrypt(out, in)
cache.useKey(name, user, slot, labels)
return
}
// DecryptShares decrypts an array of 16 byte shares using the key corresponding
// to the name parameter.
func (cache *Cache) DecryptShares(in [][]byte, name, user string, labels []string, pubEncryptedKey []byte) (out [][]byte, err error) {
cache.Refresh()
decryptKey, slot, ok := cache.MatchUser(name, user, labels)
if !ok {
return nil, errors.New("Key not delegated")
}
var aesKey []byte
// pick the aesKey to use for decryption
switch decryptKey.Type {
case passvault.RSARecord:
// extract the aes key from the pubEncryptedKey
aesKey, err = rsa.DecryptOAEP(sha1.New(), rand.Reader, &decryptKey.rsaKey, pubEncryptedKey, nil)
if err != nil {
return
}
case passvault.ECCRecord:
// extract the aes key from the pubEncryptedKey
aesKey, err = ecdh.Decrypt(decryptKey.eccKey, pubEncryptedKey)
if err != nil {
return
}
default:
return nil, errors.New("unknown type")
}
// decrypt
aesSession, err := aes.NewCipher(aesKey)
if err != nil {
return
}
for _, encShare := range in {
tmp := make([]byte, 16)
aesSession.Decrypt(tmp, encShare)
out = append(out, tmp)
}
cache.useKey(name, user, slot, labels)
return
}
// DelegateStatus will return a list of admins who have delegated to a particular user, for a particular label.
// This is useful information to have when determining the status of an order and conveying order progress.
func (cache *Cache) DelegateStatus(name string, labels, admins []string) (adminsDelegated []string, hasDelegated int) {
// Iterate over the admins of the ciphertext to look for users
// who have already delegated the label to the delegatee.
for _, admin := range admins {
for di, use := range cache.UserKeys {
if di.Name != admin {
continue
}
nameFound := false
for _, user := range use.Users {
if user == name {
nameFound = true
}
}
for _, ol := range use.Labels {
for _, il := range labels {
if ol == il {
if nameFound {
adminsDelegated = append(adminsDelegated, admin)
hasDelegated++
}
}
}
}
}
}
return
}