Allow null lock compatibility between nodes

Right now a client requesting a null mode for a lock will cause
invalidations of all existing granted modes of the lock across the
cluster.

This is unneccessarily broad.  The absolute requirement is that a null
request invalidates other existing granted modes on the client.  That's
how the client safely resolves shrinking's desire to free locks while
the locks are in use.  It relies on turning it into the race between use
and remote invalidation.

But that only requires invalidating existing grants from the requesting
client, not all clients.  It is always safe for null grants to coexist
with all grants on other clients.  Consider the existing mechanics
involving null modes.  First, null locks are instatiated on the client
before sending any requests at all.  At any given time newly allocated
null locks are coexisting with all existing locks across the cluster.
Second, the server frees the client entry tracking struct the moment it
sends a null grant to the client.  From that point on the client's null
lock can not have any impact on the rest of the lock holders because the
server has forgotten about it.

So we add this case to the server's test that two client lock modes are
compatible.  We take the opportunity to comment the heck out of this
function instead of making it a dense boolean composition.  The only
functional change is the addition of this case, the existing cases are
refactored but unchanged.

Signed-off-by: Zach Brown <zab@versity.com>
This commit is contained in:
Zach Brown
2024-10-31 09:48:07 -07:00
parent 8c1a45c9f5
commit 19e78c32fc

View File

@@ -202,21 +202,48 @@ static u8 invalidation_mode(u8 granted, u8 requested)
/*
* Return true of the client lock instances described by the entries can
* be granted at the same time. Typically this only means they're both
* modes that are compatible between nodes. In addition there's the
* special case where a read lock on a client is compatible with a write
* lock on the same client because the client's cache covered by the
* read lock is still valid if they get a write lock.
* be granted at the same time. There's only three cases where this is
* true.
*
* First, the two locks are both of the same mode that allows full
* sharing -- read and write only. The only point of these modes is
* that everyone can share them.
*
* Second, a write lock gives the client permission to read as well.
* This means that a client can upgrade its read lock to a write lock
* without having to invalidate the existing read and drop caches.
*
* Third, null locks are always compatible between clients. It's as
* though the client with the null lock has no lock at all. But it's
* never compatible with all locks on the client requesting null.
* Sending invalidations for existing locks on a client when we get a
* null request is how we resolve races in shrinking locks -- we turn it
* into the unsolicited remote invalidation case.
*
* All other mode and client combinations can not be shared, most
* typically a write lock invalidating all other non-write holders to
* drop caches and force a read after the write has completed.
*/
static bool client_entries_compatible(struct client_lock_entry *granted,
struct client_lock_entry *requested)
{
return (granted->mode == requested->mode &&
(granted->mode == SCOUTFS_LOCK_READ ||
granted->mode == SCOUTFS_LOCK_WRITE_ONLY)) ||
(granted->rid == requested->rid &&
granted->mode == SCOUTFS_LOCK_READ &&
requested->mode == SCOUTFS_LOCK_WRITE);
/* only read and write_only can be full shared */
if ((granted->mode == requested->mode) &&
(granted->mode == SCOUTFS_LOCK_READ || granted->mode == SCOUTFS_LOCK_WRITE_ONLY))
return true;
/* _write includes reading, so a client can upgrade its read to write */
if (granted->rid == requested->rid &&
granted->mode == SCOUTFS_LOCK_READ &&
requested->mode == SCOUTFS_LOCK_WRITE)
return true;
/* null is always compatible across clients, never within a client */
if ((granted->rid != requested->rid) &&
(granted->mode == SCOUTFS_LOCK_NULL || requested->mode == SCOUTFS_LOCK_NULL))
return true;
return false;
}
/*