mirror of
https://github.com/versity/scoutfs.git
synced 2025-12-23 13:35:18 +00:00
Merge pull request #201 from versity/auke/fixes_pre_parallel_restore
Misc. fixes and changes to support parallel_restore and check.
This commit is contained in:
@@ -10,6 +10,11 @@
|
||||
* Just a quick simple native bitmap.
|
||||
*/
|
||||
|
||||
int test_bit(unsigned long *bits, u64 nr)
|
||||
{
|
||||
return !!(bits[nr / BITS_PER_LONG] & (1UL << (nr & (BITS_PER_LONG - 1))));
|
||||
}
|
||||
|
||||
void set_bit(unsigned long *bits, u64 nr)
|
||||
{
|
||||
bits[nr / BITS_PER_LONG] |= 1UL << (nr & (BITS_PER_LONG - 1));
|
||||
|
||||
@@ -1,6 +1,7 @@
|
||||
#ifndef _BITMAP_H_
|
||||
#define _BITMAP_H_
|
||||
|
||||
int test_bit(unsigned long *bits, u64 nr);
|
||||
void set_bit(unsigned long *bits, u64 nr);
|
||||
void clear_bit(unsigned long *bits, u64 nr);
|
||||
u64 find_next_set_bit(unsigned long *start, u64 from, u64 total);
|
||||
|
||||
20
utils/src/bloom.c
Normal file
20
utils/src/bloom.c
Normal file
@@ -0,0 +1,20 @@
|
||||
#include <errno.h>
|
||||
|
||||
#include "sparse.h"
|
||||
#include "util.h"
|
||||
#include "format.h"
|
||||
#include "hash.h"
|
||||
#include "bloom.h"
|
||||
|
||||
void calc_bloom_nrs(struct scoutfs_key *key, unsigned int *nrs)
|
||||
{
|
||||
u64 hash;
|
||||
int i;
|
||||
|
||||
hash = scoutfs_hash64(key, sizeof(struct scoutfs_key));
|
||||
|
||||
for (i = 0; i < SCOUTFS_FOREST_BLOOM_NRS; i++) {
|
||||
nrs[i] = (u32)hash % SCOUTFS_FOREST_BLOOM_BITS;
|
||||
hash >>= SCOUTFS_FOREST_BLOOM_FUNC_BITS;
|
||||
}
|
||||
}
|
||||
6
utils/src/bloom.h
Normal file
6
utils/src/bloom.h
Normal file
@@ -0,0 +1,6 @@
|
||||
#ifndef _BLOOM_H_
|
||||
#define _BLOOM_H_
|
||||
|
||||
void calc_bloom_nrs(struct scoutfs_key *key, unsigned int *nrs);
|
||||
|
||||
#endif
|
||||
@@ -8,7 +8,7 @@
|
||||
#include "leaf_item_hash.h"
|
||||
#include "btree.h"
|
||||
|
||||
static void init_block(struct scoutfs_btree_block *bt, int level)
|
||||
void btree_init_block(struct scoutfs_btree_block *bt, int level)
|
||||
{
|
||||
int free;
|
||||
|
||||
@@ -33,7 +33,7 @@ void btree_init_root_single(struct scoutfs_btree_root *root,
|
||||
|
||||
memset(bt, 0, SCOUTFS_BLOCK_LG_SIZE);
|
||||
|
||||
init_block(bt, 0);
|
||||
btree_init_block(bt, 0);
|
||||
}
|
||||
|
||||
static void *alloc_val(struct scoutfs_btree_block *bt, int len)
|
||||
|
||||
@@ -1,6 +1,7 @@
|
||||
#ifndef _BTREE_H_
|
||||
#define _BTREE_H_
|
||||
|
||||
void btree_init_block(struct scoutfs_btree_block *bt, int level);
|
||||
void btree_init_root_single(struct scoutfs_btree_root *root,
|
||||
struct scoutfs_btree_block *bt,
|
||||
u64 seq, u64 blkno);
|
||||
|
||||
@@ -156,6 +156,16 @@ static inline void list_move_tail(struct list_head *list,
|
||||
list_add_tail(list, head);
|
||||
}
|
||||
|
||||
/**
|
||||
* list_is_head - tests whether @list is the list @head
|
||||
* @list: the entry to test
|
||||
* @head: the head of the list
|
||||
*/
|
||||
static inline int list_is_head(const struct list_head *list, const struct list_head *head)
|
||||
{
|
||||
return list == head;
|
||||
}
|
||||
|
||||
/**
|
||||
* list_empty - tests whether a list is empty
|
||||
* @head: the list to test.
|
||||
@@ -242,6 +252,15 @@ static inline void list_splice_init(struct list_head *list,
|
||||
for (pos = (head)->next, n = pos->next; pos != (head); \
|
||||
pos = n, n = pos->next)
|
||||
|
||||
/**
|
||||
* list_entry_is_head - test if the entry points to the head of the list
|
||||
* @pos: the type * to cursor
|
||||
* @head: the head for your list.
|
||||
* @member: the name of the list_head within the struct.
|
||||
*/
|
||||
#define list_entry_is_head(pos, head, member) \
|
||||
(&pos->member == (head))
|
||||
|
||||
/**
|
||||
* list_for_each_entry - iterate over list of given type
|
||||
* @pos: the type * to use as a loop counter.
|
||||
@@ -307,4 +326,28 @@ static inline void list_splice_init(struct list_head *list,
|
||||
#define list_next_entry(pos, member) \
|
||||
list_entry((pos)->member.next, typeof(*(pos)), member)
|
||||
|
||||
/**
|
||||
* list_prev_entry - get the prev element in list
|
||||
* @pos: the type * to cursor
|
||||
* @member: the name of the list_head within the struct.
|
||||
*/
|
||||
#define list_prev_entry(pos, member) \
|
||||
list_entry((pos)->member.prev, typeof(*(pos)), member)
|
||||
|
||||
/**
|
||||
* list_for_each_entry_safe_reverse - iterate backwards over list safe against removal
|
||||
* @pos: the type * to use as a loop cursor.
|
||||
* @n: another type * to use as temporary storage
|
||||
* @head: the head for your list.
|
||||
* @member: the name of the list_head within the struct.
|
||||
*
|
||||
* Iterate backwards over list of given type, safe against removal
|
||||
* of list entry.
|
||||
*/
|
||||
#define list_for_each_entry_safe_reverse(pos, n, head, member) \
|
||||
for (pos = list_last_entry(head, typeof(*pos), member), \
|
||||
n = list_prev_entry(pos, member); \
|
||||
!list_entry_is_head(pos, head, member); \
|
||||
pos = n, n = list_prev_entry(n, member))
|
||||
|
||||
#endif
|
||||
|
||||
24
utils/src/lk_rbtree_wrapper.h
Normal file
24
utils/src/lk_rbtree_wrapper.h
Normal file
@@ -0,0 +1,24 @@
|
||||
#ifndef _LK_RBTREE_WRAPPER_H_
|
||||
#define _LK_RBTREE_WRAPPER_H_
|
||||
|
||||
/*
|
||||
* We're using this lame hack to build and use the kernel's rbtree in
|
||||
* userspace. We drop the kernel's rbtree*[ch] implementation in and
|
||||
* use them with this wrapper. We only have to remove the kernel
|
||||
* includes from the imported files.
|
||||
*/
|
||||
|
||||
#include <stdbool.h>
|
||||
#include "util.h"
|
||||
|
||||
#define rcu_assign_pointer(a, b) do { a = b; } while (0)
|
||||
#define READ_ONCE(a) ({ a; })
|
||||
#define WRITE_ONCE(a, b) do { a = b; } while (0)
|
||||
#define unlikely(a) ({ a; })
|
||||
#define EXPORT_SYMBOL(a) /* nop */
|
||||
|
||||
#include "rbtree_types.h"
|
||||
#include "rbtree.h"
|
||||
#include "rbtree_augmented.h"
|
||||
|
||||
#endif
|
||||
24
utils/src/mode_types.c
Normal file
24
utils/src/mode_types.c
Normal file
@@ -0,0 +1,24 @@
|
||||
#include <unistd.h>
|
||||
#include <sys/stat.h>
|
||||
|
||||
#include "sparse.h"
|
||||
#include "util.h"
|
||||
#include "format.h"
|
||||
#include "mode_types.h"
|
||||
|
||||
unsigned int mode_to_type(mode_t mode)
|
||||
{
|
||||
#define S_SHIFT 12
|
||||
static unsigned char mode_types[S_IFMT >> S_SHIFT] = {
|
||||
[S_IFIFO >> S_SHIFT] = SCOUTFS_DT_FIFO,
|
||||
[S_IFCHR >> S_SHIFT] = SCOUTFS_DT_CHR,
|
||||
[S_IFDIR >> S_SHIFT] = SCOUTFS_DT_DIR,
|
||||
[S_IFBLK >> S_SHIFT] = SCOUTFS_DT_BLK,
|
||||
[S_IFREG >> S_SHIFT] = SCOUTFS_DT_REG,
|
||||
[S_IFLNK >> S_SHIFT] = SCOUTFS_DT_LNK,
|
||||
[S_IFSOCK >> S_SHIFT] = SCOUTFS_DT_SOCK,
|
||||
};
|
||||
|
||||
return mode_types[(mode & S_IFMT) >> S_SHIFT];
|
||||
#undef S_SHIFT
|
||||
}
|
||||
6
utils/src/mode_types.h
Normal file
6
utils/src/mode_types.h
Normal file
@@ -0,0 +1,6 @@
|
||||
#ifndef _MODE_TYPES_H_
|
||||
#define _MODE_TYPES_H_
|
||||
|
||||
unsigned int mode_to_type(mode_t mode);
|
||||
|
||||
#endif
|
||||
46
utils/src/name_hash.h
Normal file
46
utils/src/name_hash.h
Normal file
@@ -0,0 +1,46 @@
|
||||
#ifndef _SCOUTFS_NAME_HASH_H_
|
||||
#define _SCOUTFS_NAME_HASH_H_
|
||||
|
||||
#include "hash.h"
|
||||
|
||||
/*
|
||||
* Test a bit number as though an array of bytes is a large len-bit
|
||||
* big-endian value. nr 0 is the LSB of the final byte, nr (len - 1) is
|
||||
* the MSB of the first byte.
|
||||
*/
|
||||
static int test_be_bytes_bit(int nr, const char *bytes, int len)
|
||||
{
|
||||
return bytes[(len - 1 - nr) >> 3] & (1 << (nr & 7));
|
||||
}
|
||||
|
||||
/*
|
||||
* Generate a 32bit "fingerprint" of the name by extracting 32 evenly
|
||||
* distributed bits from the name. The intent is to have the sort order
|
||||
* of the fingerprints reflect the memcmp() sort order of the names
|
||||
* while mapping large names down to small fs keys.
|
||||
*
|
||||
* Names that are smaller than 32bits are biased towards the high bits
|
||||
* of the fingerprint so that most significant bits of the fingerprints
|
||||
* consistently reflect the initial characters of the names.
|
||||
*/
|
||||
static inline u32 dirent_name_fingerprint(const char *name, unsigned int name_len)
|
||||
{
|
||||
int name_bits = name_len * 8;
|
||||
int skip = max(name_bits / 32, 1);
|
||||
u32 fp = 0;
|
||||
int f;
|
||||
int n;
|
||||
|
||||
for (f = 31, n = name_bits - 1; f >= 0 && n >= 0; f--, n -= skip)
|
||||
fp |= !!test_be_bytes_bit(n, name, name_bits) << f;
|
||||
|
||||
return fp;
|
||||
}
|
||||
|
||||
static inline u64 dirent_name_hash(const char *name, unsigned int name_len)
|
||||
{
|
||||
return scoutfs_hash32(name, name_len) |
|
||||
((u64)dirent_name_fingerprint(name, name_len) << 32);
|
||||
}
|
||||
|
||||
#endif
|
||||
@@ -645,6 +645,8 @@ static int print_alloc_list_block(int fd, char *str, struct scoutfs_block_ref *r
|
||||
u64 blkno;
|
||||
u64 start;
|
||||
u64 len;
|
||||
u64 st;
|
||||
u64 nr;
|
||||
int wid;
|
||||
int ret;
|
||||
int i;
|
||||
@@ -663,17 +665,27 @@ static int print_alloc_list_block(int fd, char *str, struct scoutfs_block_ref *r
|
||||
AL_REF_A(&lblk->next), le32_to_cpu(lblk->start),
|
||||
le32_to_cpu(lblk->nr));
|
||||
|
||||
if (lblk->nr) {
|
||||
st = le32_to_cpu(lblk->start);
|
||||
nr = le32_to_cpu(lblk->nr);
|
||||
if (st >= SCOUTFS_ALLOC_LIST_MAX_BLOCKS ||
|
||||
nr > SCOUTFS_ALLOC_LIST_MAX_BLOCKS ||
|
||||
(st + nr) > SCOUTFS_ALLOC_LIST_MAX_BLOCKS) {
|
||||
printf(" (invalid start and nr fields)\n");
|
||||
goto out;
|
||||
}
|
||||
|
||||
if (lblk->nr == 0)
|
||||
goto out;
|
||||
|
||||
wid = printf(" exts: ");
|
||||
start = 0;
|
||||
len = 0;
|
||||
for (i = 0; i < le32_to_cpu(lblk->nr); i++) {
|
||||
for (i = 0; i < nr; i++) {
|
||||
if (len == 0)
|
||||
start = le64_to_cpu(lblk->blknos[i]);
|
||||
start = le64_to_cpu(lblk->blknos[st + i]);
|
||||
len++;
|
||||
|
||||
if (i == (le32_to_cpu(lblk->nr) - 1) ||
|
||||
start + len != le64_to_cpu(lblk->blknos[i + 1])) {
|
||||
if (i == (nr - 1) || (start + len) != le64_to_cpu(lblk->blknos[st + i + 1])) {
|
||||
if (wid >= 72)
|
||||
wid = printf("\n ");
|
||||
|
||||
@@ -682,8 +694,8 @@ static int print_alloc_list_block(int fd, char *str, struct scoutfs_block_ref *r
|
||||
}
|
||||
}
|
||||
printf("\n");
|
||||
}
|
||||
|
||||
out:
|
||||
next = lblk->next;
|
||||
free(lblk);
|
||||
return print_alloc_list_block(fd, str, &next);
|
||||
|
||||
629
utils/src/rbtree.c
Normal file
629
utils/src/rbtree.c
Normal file
@@ -0,0 +1,629 @@
|
||||
// SPDX-License-Identifier: GPL-2.0-or-later
|
||||
/*
|
||||
Red Black Trees
|
||||
(C) 1999 Andrea Arcangeli <andrea@suse.de>
|
||||
(C) 2002 David Woodhouse <dwmw2@infradead.org>
|
||||
(C) 2012 Michel Lespinasse <walken@google.com>
|
||||
|
||||
|
||||
linux/lib/rbtree.c
|
||||
*/
|
||||
|
||||
#include "lk_rbtree_wrapper.h"
|
||||
|
||||
/*
|
||||
* red-black trees properties: https://en.wikipedia.org/wiki/Rbtree
|
||||
*
|
||||
* 1) A node is either red or black
|
||||
* 2) The root is black
|
||||
* 3) All leaves (NULL) are black
|
||||
* 4) Both children of every red node are black
|
||||
* 5) Every simple path from root to leaves contains the same number
|
||||
* of black nodes.
|
||||
*
|
||||
* 4 and 5 give the O(log n) guarantee, since 4 implies you cannot have two
|
||||
* consecutive red nodes in a path and every red node is therefore followed by
|
||||
* a black. So if B is the number of black nodes on every simple path (as per
|
||||
* 5), then the longest possible path due to 4 is 2B.
|
||||
*
|
||||
* We shall indicate color with case, where black nodes are uppercase and red
|
||||
* nodes will be lowercase. Unknown color nodes shall be drawn as red within
|
||||
* parentheses and have some accompanying text comment.
|
||||
*/
|
||||
|
||||
/*
|
||||
* Notes on lockless lookups:
|
||||
*
|
||||
* All stores to the tree structure (rb_left and rb_right) must be done using
|
||||
* WRITE_ONCE(). And we must not inadvertently cause (temporary) loops in the
|
||||
* tree structure as seen in program order.
|
||||
*
|
||||
* These two requirements will allow lockless iteration of the tree -- not
|
||||
* correct iteration mind you, tree rotations are not atomic so a lookup might
|
||||
* miss entire subtrees.
|
||||
*
|
||||
* But they do guarantee that any such traversal will only see valid elements
|
||||
* and that it will indeed complete -- does not get stuck in a loop.
|
||||
*
|
||||
* It also guarantees that if the lookup returns an element it is the 'correct'
|
||||
* one. But not returning an element does _NOT_ mean it's not present.
|
||||
*
|
||||
* NOTE:
|
||||
*
|
||||
* Stores to __rb_parent_color are not important for simple lookups so those
|
||||
* are left undone as of now. Nor did I check for loops involving parent
|
||||
* pointers.
|
||||
*/
|
||||
|
||||
static inline void rb_set_black(struct rb_node *rb)
|
||||
{
|
||||
rb->__rb_parent_color |= RB_BLACK;
|
||||
}
|
||||
|
||||
static inline struct rb_node *rb_red_parent(struct rb_node *red)
|
||||
{
|
||||
return (struct rb_node *)red->__rb_parent_color;
|
||||
}
|
||||
|
||||
/*
|
||||
* Helper function for rotations:
|
||||
* - old's parent and color get assigned to new
|
||||
* - old gets assigned new as a parent and 'color' as a color.
|
||||
*/
|
||||
static inline void
|
||||
__rb_rotate_set_parents(struct rb_node *old, struct rb_node *new,
|
||||
struct rb_root *root, int color)
|
||||
{
|
||||
struct rb_node *parent = rb_parent(old);
|
||||
new->__rb_parent_color = old->__rb_parent_color;
|
||||
rb_set_parent_color(old, new, color);
|
||||
__rb_change_child(old, new, parent, root);
|
||||
}
|
||||
|
||||
static __always_inline void
|
||||
__rb_insert(struct rb_node *node, struct rb_root *root,
|
||||
void (*augment_rotate)(struct rb_node *old, struct rb_node *new))
|
||||
{
|
||||
struct rb_node *parent = rb_red_parent(node), *gparent, *tmp;
|
||||
|
||||
while (true) {
|
||||
/*
|
||||
* Loop invariant: node is red.
|
||||
*/
|
||||
if (unlikely(!parent)) {
|
||||
/*
|
||||
* The inserted node is root. Either this is the
|
||||
* first node, or we recursed at Case 1 below and
|
||||
* are no longer violating 4).
|
||||
*/
|
||||
rb_set_parent_color(node, NULL, RB_BLACK);
|
||||
break;
|
||||
}
|
||||
|
||||
/*
|
||||
* If there is a black parent, we are done.
|
||||
* Otherwise, take some corrective action as,
|
||||
* per 4), we don't want a red root or two
|
||||
* consecutive red nodes.
|
||||
*/
|
||||
if(rb_is_black(parent))
|
||||
break;
|
||||
|
||||
gparent = rb_red_parent(parent);
|
||||
|
||||
tmp = gparent->rb_right;
|
||||
if (parent != tmp) { /* parent == gparent->rb_left */
|
||||
if (tmp && rb_is_red(tmp)) {
|
||||
/*
|
||||
* Case 1 - node's uncle is red (color flips).
|
||||
*
|
||||
* G g
|
||||
* / \ / \
|
||||
* p u --> P U
|
||||
* / /
|
||||
* n n
|
||||
*
|
||||
* However, since g's parent might be red, and
|
||||
* 4) does not allow this, we need to recurse
|
||||
* at g.
|
||||
*/
|
||||
rb_set_parent_color(tmp, gparent, RB_BLACK);
|
||||
rb_set_parent_color(parent, gparent, RB_BLACK);
|
||||
node = gparent;
|
||||
parent = rb_parent(node);
|
||||
rb_set_parent_color(node, parent, RB_RED);
|
||||
continue;
|
||||
}
|
||||
|
||||
tmp = parent->rb_right;
|
||||
if (node == tmp) {
|
||||
/*
|
||||
* Case 2 - node's uncle is black and node is
|
||||
* the parent's right child (left rotate at parent).
|
||||
*
|
||||
* G G
|
||||
* / \ / \
|
||||
* p U --> n U
|
||||
* \ /
|
||||
* n p
|
||||
*
|
||||
* This still leaves us in violation of 4), the
|
||||
* continuation into Case 3 will fix that.
|
||||
*/
|
||||
tmp = node->rb_left;
|
||||
WRITE_ONCE(parent->rb_right, tmp);
|
||||
WRITE_ONCE(node->rb_left, parent);
|
||||
if (tmp)
|
||||
rb_set_parent_color(tmp, parent,
|
||||
RB_BLACK);
|
||||
rb_set_parent_color(parent, node, RB_RED);
|
||||
augment_rotate(parent, node);
|
||||
parent = node;
|
||||
tmp = node->rb_right;
|
||||
}
|
||||
|
||||
/*
|
||||
* Case 3 - node's uncle is black and node is
|
||||
* the parent's left child (right rotate at gparent).
|
||||
*
|
||||
* G P
|
||||
* / \ / \
|
||||
* p U --> n g
|
||||
* / \
|
||||
* n U
|
||||
*/
|
||||
WRITE_ONCE(gparent->rb_left, tmp); /* == parent->rb_right */
|
||||
WRITE_ONCE(parent->rb_right, gparent);
|
||||
if (tmp)
|
||||
rb_set_parent_color(tmp, gparent, RB_BLACK);
|
||||
__rb_rotate_set_parents(gparent, parent, root, RB_RED);
|
||||
augment_rotate(gparent, parent);
|
||||
break;
|
||||
} else {
|
||||
tmp = gparent->rb_left;
|
||||
if (tmp && rb_is_red(tmp)) {
|
||||
/* Case 1 - color flips */
|
||||
rb_set_parent_color(tmp, gparent, RB_BLACK);
|
||||
rb_set_parent_color(parent, gparent, RB_BLACK);
|
||||
node = gparent;
|
||||
parent = rb_parent(node);
|
||||
rb_set_parent_color(node, parent, RB_RED);
|
||||
continue;
|
||||
}
|
||||
|
||||
tmp = parent->rb_left;
|
||||
if (node == tmp) {
|
||||
/* Case 2 - right rotate at parent */
|
||||
tmp = node->rb_right;
|
||||
WRITE_ONCE(parent->rb_left, tmp);
|
||||
WRITE_ONCE(node->rb_right, parent);
|
||||
if (tmp)
|
||||
rb_set_parent_color(tmp, parent,
|
||||
RB_BLACK);
|
||||
rb_set_parent_color(parent, node, RB_RED);
|
||||
augment_rotate(parent, node);
|
||||
parent = node;
|
||||
tmp = node->rb_left;
|
||||
}
|
||||
|
||||
/* Case 3 - left rotate at gparent */
|
||||
WRITE_ONCE(gparent->rb_right, tmp); /* == parent->rb_left */
|
||||
WRITE_ONCE(parent->rb_left, gparent);
|
||||
if (tmp)
|
||||
rb_set_parent_color(tmp, gparent, RB_BLACK);
|
||||
__rb_rotate_set_parents(gparent, parent, root, RB_RED);
|
||||
augment_rotate(gparent, parent);
|
||||
break;
|
||||
}
|
||||
}
|
||||
}
|
||||
|
||||
/*
|
||||
* Inline version for rb_erase() use - we want to be able to inline
|
||||
* and eliminate the dummy_rotate callback there
|
||||
*/
|
||||
static __always_inline void
|
||||
____rb_erase_color(struct rb_node *parent, struct rb_root *root,
|
||||
void (*augment_rotate)(struct rb_node *old, struct rb_node *new))
|
||||
{
|
||||
struct rb_node *node = NULL, *sibling, *tmp1, *tmp2;
|
||||
|
||||
while (true) {
|
||||
/*
|
||||
* Loop invariants:
|
||||
* - node is black (or NULL on first iteration)
|
||||
* - node is not the root (parent is not NULL)
|
||||
* - All leaf paths going through parent and node have a
|
||||
* black node count that is 1 lower than other leaf paths.
|
||||
*/
|
||||
sibling = parent->rb_right;
|
||||
if (node != sibling) { /* node == parent->rb_left */
|
||||
if (rb_is_red(sibling)) {
|
||||
/*
|
||||
* Case 1 - left rotate at parent
|
||||
*
|
||||
* P S
|
||||
* / \ / \
|
||||
* N s --> p Sr
|
||||
* / \ / \
|
||||
* Sl Sr N Sl
|
||||
*/
|
||||
tmp1 = sibling->rb_left;
|
||||
WRITE_ONCE(parent->rb_right, tmp1);
|
||||
WRITE_ONCE(sibling->rb_left, parent);
|
||||
rb_set_parent_color(tmp1, parent, RB_BLACK);
|
||||
__rb_rotate_set_parents(parent, sibling, root,
|
||||
RB_RED);
|
||||
augment_rotate(parent, sibling);
|
||||
sibling = tmp1;
|
||||
}
|
||||
tmp1 = sibling->rb_right;
|
||||
if (!tmp1 || rb_is_black(tmp1)) {
|
||||
tmp2 = sibling->rb_left;
|
||||
if (!tmp2 || rb_is_black(tmp2)) {
|
||||
/*
|
||||
* Case 2 - sibling color flip
|
||||
* (p could be either color here)
|
||||
*
|
||||
* (p) (p)
|
||||
* / \ / \
|
||||
* N S --> N s
|
||||
* / \ / \
|
||||
* Sl Sr Sl Sr
|
||||
*
|
||||
* This leaves us violating 5) which
|
||||
* can be fixed by flipping p to black
|
||||
* if it was red, or by recursing at p.
|
||||
* p is red when coming from Case 1.
|
||||
*/
|
||||
rb_set_parent_color(sibling, parent,
|
||||
RB_RED);
|
||||
if (rb_is_red(parent))
|
||||
rb_set_black(parent);
|
||||
else {
|
||||
node = parent;
|
||||
parent = rb_parent(node);
|
||||
if (parent)
|
||||
continue;
|
||||
}
|
||||
break;
|
||||
}
|
||||
/*
|
||||
* Case 3 - right rotate at sibling
|
||||
* (p could be either color here)
|
||||
*
|
||||
* (p) (p)
|
||||
* / \ / \
|
||||
* N S --> N sl
|
||||
* / \ \
|
||||
* sl Sr S
|
||||
* \
|
||||
* Sr
|
||||
*
|
||||
* Note: p might be red, and then both
|
||||
* p and sl are red after rotation(which
|
||||
* breaks property 4). This is fixed in
|
||||
* Case 4 (in __rb_rotate_set_parents()
|
||||
* which set sl the color of p
|
||||
* and set p RB_BLACK)
|
||||
*
|
||||
* (p) (sl)
|
||||
* / \ / \
|
||||
* N sl --> P S
|
||||
* \ / \
|
||||
* S N Sr
|
||||
* \
|
||||
* Sr
|
||||
*/
|
||||
tmp1 = tmp2->rb_right;
|
||||
WRITE_ONCE(sibling->rb_left, tmp1);
|
||||
WRITE_ONCE(tmp2->rb_right, sibling);
|
||||
WRITE_ONCE(parent->rb_right, tmp2);
|
||||
if (tmp1)
|
||||
rb_set_parent_color(tmp1, sibling,
|
||||
RB_BLACK);
|
||||
augment_rotate(sibling, tmp2);
|
||||
tmp1 = sibling;
|
||||
sibling = tmp2;
|
||||
}
|
||||
/*
|
||||
* Case 4 - left rotate at parent + color flips
|
||||
* (p and sl could be either color here.
|
||||
* After rotation, p becomes black, s acquires
|
||||
* p's color, and sl keeps its color)
|
||||
*
|
||||
* (p) (s)
|
||||
* / \ / \
|
||||
* N S --> P Sr
|
||||
* / \ / \
|
||||
* (sl) sr N (sl)
|
||||
*/
|
||||
tmp2 = sibling->rb_left;
|
||||
WRITE_ONCE(parent->rb_right, tmp2);
|
||||
WRITE_ONCE(sibling->rb_left, parent);
|
||||
rb_set_parent_color(tmp1, sibling, RB_BLACK);
|
||||
if (tmp2)
|
||||
rb_set_parent(tmp2, parent);
|
||||
__rb_rotate_set_parents(parent, sibling, root,
|
||||
RB_BLACK);
|
||||
augment_rotate(parent, sibling);
|
||||
break;
|
||||
} else {
|
||||
sibling = parent->rb_left;
|
||||
if (rb_is_red(sibling)) {
|
||||
/* Case 1 - right rotate at parent */
|
||||
tmp1 = sibling->rb_right;
|
||||
WRITE_ONCE(parent->rb_left, tmp1);
|
||||
WRITE_ONCE(sibling->rb_right, parent);
|
||||
rb_set_parent_color(tmp1, parent, RB_BLACK);
|
||||
__rb_rotate_set_parents(parent, sibling, root,
|
||||
RB_RED);
|
||||
augment_rotate(parent, sibling);
|
||||
sibling = tmp1;
|
||||
}
|
||||
tmp1 = sibling->rb_left;
|
||||
if (!tmp1 || rb_is_black(tmp1)) {
|
||||
tmp2 = sibling->rb_right;
|
||||
if (!tmp2 || rb_is_black(tmp2)) {
|
||||
/* Case 2 - sibling color flip */
|
||||
rb_set_parent_color(sibling, parent,
|
||||
RB_RED);
|
||||
if (rb_is_red(parent))
|
||||
rb_set_black(parent);
|
||||
else {
|
||||
node = parent;
|
||||
parent = rb_parent(node);
|
||||
if (parent)
|
||||
continue;
|
||||
}
|
||||
break;
|
||||
}
|
||||
/* Case 3 - left rotate at sibling */
|
||||
tmp1 = tmp2->rb_left;
|
||||
WRITE_ONCE(sibling->rb_right, tmp1);
|
||||
WRITE_ONCE(tmp2->rb_left, sibling);
|
||||
WRITE_ONCE(parent->rb_left, tmp2);
|
||||
if (tmp1)
|
||||
rb_set_parent_color(tmp1, sibling,
|
||||
RB_BLACK);
|
||||
augment_rotate(sibling, tmp2);
|
||||
tmp1 = sibling;
|
||||
sibling = tmp2;
|
||||
}
|
||||
/* Case 4 - right rotate at parent + color flips */
|
||||
tmp2 = sibling->rb_right;
|
||||
WRITE_ONCE(parent->rb_left, tmp2);
|
||||
WRITE_ONCE(sibling->rb_right, parent);
|
||||
rb_set_parent_color(tmp1, sibling, RB_BLACK);
|
||||
if (tmp2)
|
||||
rb_set_parent(tmp2, parent);
|
||||
__rb_rotate_set_parents(parent, sibling, root,
|
||||
RB_BLACK);
|
||||
augment_rotate(parent, sibling);
|
||||
break;
|
||||
}
|
||||
}
|
||||
}
|
||||
|
||||
/* Non-inline version for rb_erase_augmented() use */
|
||||
void __rb_erase_color(struct rb_node *parent, struct rb_root *root,
|
||||
void (*augment_rotate)(struct rb_node *old, struct rb_node *new))
|
||||
{
|
||||
____rb_erase_color(parent, root, augment_rotate);
|
||||
}
|
||||
EXPORT_SYMBOL(__rb_erase_color);
|
||||
|
||||
/*
|
||||
* Non-augmented rbtree manipulation functions.
|
||||
*
|
||||
* We use dummy augmented callbacks here, and have the compiler optimize them
|
||||
* out of the rb_insert_color() and rb_erase() function definitions.
|
||||
*/
|
||||
|
||||
static inline void dummy_propagate(struct rb_node *node, struct rb_node *stop) {}
|
||||
static inline void dummy_copy(struct rb_node *old, struct rb_node *new) {}
|
||||
static inline void dummy_rotate(struct rb_node *old, struct rb_node *new) {}
|
||||
|
||||
static const struct rb_augment_callbacks dummy_callbacks = {
|
||||
.propagate = dummy_propagate,
|
||||
.copy = dummy_copy,
|
||||
.rotate = dummy_rotate
|
||||
};
|
||||
|
||||
void rb_insert_color(struct rb_node *node, struct rb_root *root)
|
||||
{
|
||||
__rb_insert(node, root, dummy_rotate);
|
||||
}
|
||||
EXPORT_SYMBOL(rb_insert_color);
|
||||
|
||||
void rb_erase(struct rb_node *node, struct rb_root *root)
|
||||
{
|
||||
struct rb_node *rebalance;
|
||||
rebalance = __rb_erase_augmented(node, root, &dummy_callbacks);
|
||||
if (rebalance)
|
||||
____rb_erase_color(rebalance, root, dummy_rotate);
|
||||
}
|
||||
EXPORT_SYMBOL(rb_erase);
|
||||
|
||||
/*
|
||||
* Augmented rbtree manipulation functions.
|
||||
*
|
||||
* This instantiates the same __always_inline functions as in the non-augmented
|
||||
* case, but this time with user-defined callbacks.
|
||||
*/
|
||||
|
||||
void __rb_insert_augmented(struct rb_node *node, struct rb_root *root,
|
||||
void (*augment_rotate)(struct rb_node *old, struct rb_node *new))
|
||||
{
|
||||
__rb_insert(node, root, augment_rotate);
|
||||
}
|
||||
EXPORT_SYMBOL(__rb_insert_augmented);
|
||||
|
||||
/*
|
||||
* This function returns the first node (in sort order) of the tree.
|
||||
*/
|
||||
struct rb_node *rb_first(const struct rb_root *root)
|
||||
{
|
||||
struct rb_node *n;
|
||||
|
||||
n = root->rb_node;
|
||||
if (!n)
|
||||
return NULL;
|
||||
while (n->rb_left)
|
||||
n = n->rb_left;
|
||||
return n;
|
||||
}
|
||||
EXPORT_SYMBOL(rb_first);
|
||||
|
||||
struct rb_node *rb_last(const struct rb_root *root)
|
||||
{
|
||||
struct rb_node *n;
|
||||
|
||||
n = root->rb_node;
|
||||
if (!n)
|
||||
return NULL;
|
||||
while (n->rb_right)
|
||||
n = n->rb_right;
|
||||
return n;
|
||||
}
|
||||
EXPORT_SYMBOL(rb_last);
|
||||
|
||||
struct rb_node *rb_next(const struct rb_node *node)
|
||||
{
|
||||
struct rb_node *parent;
|
||||
|
||||
if (RB_EMPTY_NODE(node))
|
||||
return NULL;
|
||||
|
||||
/*
|
||||
* If we have a right-hand child, go down and then left as far
|
||||
* as we can.
|
||||
*/
|
||||
if (node->rb_right) {
|
||||
node = node->rb_right;
|
||||
while (node->rb_left)
|
||||
node = node->rb_left;
|
||||
return (struct rb_node *)node;
|
||||
}
|
||||
|
||||
/*
|
||||
* No right-hand children. Everything down and left is smaller than us,
|
||||
* so any 'next' node must be in the general direction of our parent.
|
||||
* Go up the tree; any time the ancestor is a right-hand child of its
|
||||
* parent, keep going up. First time it's a left-hand child of its
|
||||
* parent, said parent is our 'next' node.
|
||||
*/
|
||||
while ((parent = rb_parent(node)) && node == parent->rb_right)
|
||||
node = parent;
|
||||
|
||||
return parent;
|
||||
}
|
||||
EXPORT_SYMBOL(rb_next);
|
||||
|
||||
struct rb_node *rb_prev(const struct rb_node *node)
|
||||
{
|
||||
struct rb_node *parent;
|
||||
|
||||
if (RB_EMPTY_NODE(node))
|
||||
return NULL;
|
||||
|
||||
/*
|
||||
* If we have a left-hand child, go down and then right as far
|
||||
* as we can.
|
||||
*/
|
||||
if (node->rb_left) {
|
||||
node = node->rb_left;
|
||||
while (node->rb_right)
|
||||
node = node->rb_right;
|
||||
return (struct rb_node *)node;
|
||||
}
|
||||
|
||||
/*
|
||||
* No left-hand children. Go up till we find an ancestor which
|
||||
* is a right-hand child of its parent.
|
||||
*/
|
||||
while ((parent = rb_parent(node)) && node == parent->rb_left)
|
||||
node = parent;
|
||||
|
||||
return parent;
|
||||
}
|
||||
EXPORT_SYMBOL(rb_prev);
|
||||
|
||||
void rb_replace_node(struct rb_node *victim, struct rb_node *new,
|
||||
struct rb_root *root)
|
||||
{
|
||||
struct rb_node *parent = rb_parent(victim);
|
||||
|
||||
/* Copy the pointers/colour from the victim to the replacement */
|
||||
*new = *victim;
|
||||
|
||||
/* Set the surrounding nodes to point to the replacement */
|
||||
if (victim->rb_left)
|
||||
rb_set_parent(victim->rb_left, new);
|
||||
if (victim->rb_right)
|
||||
rb_set_parent(victim->rb_right, new);
|
||||
__rb_change_child(victim, new, parent, root);
|
||||
}
|
||||
EXPORT_SYMBOL(rb_replace_node);
|
||||
|
||||
void rb_replace_node_rcu(struct rb_node *victim, struct rb_node *new,
|
||||
struct rb_root *root)
|
||||
{
|
||||
struct rb_node *parent = rb_parent(victim);
|
||||
|
||||
/* Copy the pointers/colour from the victim to the replacement */
|
||||
*new = *victim;
|
||||
|
||||
/* Set the surrounding nodes to point to the replacement */
|
||||
if (victim->rb_left)
|
||||
rb_set_parent(victim->rb_left, new);
|
||||
if (victim->rb_right)
|
||||
rb_set_parent(victim->rb_right, new);
|
||||
|
||||
/* Set the parent's pointer to the new node last after an RCU barrier
|
||||
* so that the pointers onwards are seen to be set correctly when doing
|
||||
* an RCU walk over the tree.
|
||||
*/
|
||||
__rb_change_child_rcu(victim, new, parent, root);
|
||||
}
|
||||
EXPORT_SYMBOL(rb_replace_node_rcu);
|
||||
|
||||
static struct rb_node *rb_left_deepest_node(const struct rb_node *node)
|
||||
{
|
||||
for (;;) {
|
||||
if (node->rb_left)
|
||||
node = node->rb_left;
|
||||
else if (node->rb_right)
|
||||
node = node->rb_right;
|
||||
else
|
||||
return (struct rb_node *)node;
|
||||
}
|
||||
}
|
||||
|
||||
struct rb_node *rb_next_postorder(const struct rb_node *node)
|
||||
{
|
||||
const struct rb_node *parent;
|
||||
if (!node)
|
||||
return NULL;
|
||||
parent = rb_parent(node);
|
||||
|
||||
/* If we're sitting on node, we've already seen our children */
|
||||
if (parent && node == parent->rb_left && parent->rb_right) {
|
||||
/* If we are the parent's left node, go to the parent's right
|
||||
* node then all the way down to the left */
|
||||
return rb_left_deepest_node(parent->rb_right);
|
||||
} else
|
||||
/* Otherwise we are the parent's right node, and the parent
|
||||
* should be next */
|
||||
return (struct rb_node *)parent;
|
||||
}
|
||||
EXPORT_SYMBOL(rb_next_postorder);
|
||||
|
||||
struct rb_node *rb_first_postorder(const struct rb_root *root)
|
||||
{
|
||||
if (!root->rb_node)
|
||||
return NULL;
|
||||
|
||||
return rb_left_deepest_node(root->rb_node);
|
||||
}
|
||||
EXPORT_SYMBOL(rb_first_postorder);
|
||||
328
utils/src/rbtree.h
Normal file
328
utils/src/rbtree.h
Normal file
@@ -0,0 +1,328 @@
|
||||
/* SPDX-License-Identifier: GPL-2.0-or-later */
|
||||
/*
|
||||
Red Black Trees
|
||||
(C) 1999 Andrea Arcangeli <andrea@suse.de>
|
||||
|
||||
|
||||
linux/include/linux/rbtree.h
|
||||
|
||||
To use rbtrees you'll have to implement your own insert and search cores.
|
||||
This will avoid us to use callbacks and to drop drammatically performances.
|
||||
I know it's not the cleaner way, but in C (not in C++) to get
|
||||
performances and genericity...
|
||||
|
||||
See Documentation/core-api/rbtree.rst for documentation and samples.
|
||||
*/
|
||||
|
||||
#ifndef _LINUX_RBTREE_H
|
||||
#define _LINUX_RBTREE_H
|
||||
|
||||
#define rb_parent(r) ((struct rb_node *)((r)->__rb_parent_color & ~3))
|
||||
|
||||
#define rb_entry(ptr, type, member) container_of(ptr, type, member)
|
||||
|
||||
#define RB_EMPTY_ROOT(root) (READ_ONCE((root)->rb_node) == NULL)
|
||||
|
||||
/* 'empty' nodes are nodes that are known not to be inserted in an rbtree */
|
||||
#define RB_EMPTY_NODE(node) \
|
||||
((node)->__rb_parent_color == (unsigned long)(node))
|
||||
#define RB_CLEAR_NODE(node) \
|
||||
((node)->__rb_parent_color = (unsigned long)(node))
|
||||
|
||||
|
||||
extern void rb_insert_color(struct rb_node *, struct rb_root *);
|
||||
extern void rb_erase(struct rb_node *, struct rb_root *);
|
||||
|
||||
|
||||
/* Find logical next and previous nodes in a tree */
|
||||
extern struct rb_node *rb_next(const struct rb_node *);
|
||||
extern struct rb_node *rb_prev(const struct rb_node *);
|
||||
extern struct rb_node *rb_first(const struct rb_root *);
|
||||
extern struct rb_node *rb_last(const struct rb_root *);
|
||||
|
||||
/* Postorder iteration - always visit the parent after its children */
|
||||
extern struct rb_node *rb_first_postorder(const struct rb_root *);
|
||||
extern struct rb_node *rb_next_postorder(const struct rb_node *);
|
||||
|
||||
/* Fast replacement of a single node without remove/rebalance/add/rebalance */
|
||||
extern void rb_replace_node(struct rb_node *victim, struct rb_node *new,
|
||||
struct rb_root *root);
|
||||
extern void rb_replace_node_rcu(struct rb_node *victim, struct rb_node *new,
|
||||
struct rb_root *root);
|
||||
|
||||
static inline void rb_link_node(struct rb_node *node, struct rb_node *parent,
|
||||
struct rb_node **rb_link)
|
||||
{
|
||||
node->__rb_parent_color = (unsigned long)parent;
|
||||
node->rb_left = node->rb_right = NULL;
|
||||
|
||||
*rb_link = node;
|
||||
}
|
||||
|
||||
static inline void rb_link_node_rcu(struct rb_node *node, struct rb_node *parent,
|
||||
struct rb_node **rb_link)
|
||||
{
|
||||
node->__rb_parent_color = (unsigned long)parent;
|
||||
node->rb_left = node->rb_right = NULL;
|
||||
|
||||
rcu_assign_pointer(*rb_link, node);
|
||||
}
|
||||
|
||||
#define rb_entry_safe(ptr, type, member) \
|
||||
({ typeof(ptr) ____ptr = (ptr); \
|
||||
____ptr ? rb_entry(____ptr, type, member) : NULL; \
|
||||
})
|
||||
|
||||
/**
|
||||
* rbtree_postorder_for_each_entry_safe - iterate in post-order over rb_root of
|
||||
* given type allowing the backing memory of @pos to be invalidated
|
||||
*
|
||||
* @pos: the 'type *' to use as a loop cursor.
|
||||
* @n: another 'type *' to use as temporary storage
|
||||
* @root: 'rb_root *' of the rbtree.
|
||||
* @field: the name of the rb_node field within 'type'.
|
||||
*
|
||||
* rbtree_postorder_for_each_entry_safe() provides a similar guarantee as
|
||||
* list_for_each_entry_safe() and allows the iteration to continue independent
|
||||
* of changes to @pos by the body of the loop.
|
||||
*
|
||||
* Note, however, that it cannot handle other modifications that re-order the
|
||||
* rbtree it is iterating over. This includes calling rb_erase() on @pos, as
|
||||
* rb_erase() may rebalance the tree, causing us to miss some nodes.
|
||||
*/
|
||||
#define rbtree_postorder_for_each_entry_safe(pos, n, root, field) \
|
||||
for (pos = rb_entry_safe(rb_first_postorder(root), typeof(*pos), field); \
|
||||
pos && ({ n = rb_entry_safe(rb_next_postorder(&pos->field), \
|
||||
typeof(*pos), field); 1; }); \
|
||||
pos = n)
|
||||
|
||||
/* Same as rb_first(), but O(1) */
|
||||
#define rb_first_cached(root) (root)->rb_leftmost
|
||||
|
||||
static inline void rb_insert_color_cached(struct rb_node *node,
|
||||
struct rb_root_cached *root,
|
||||
bool leftmost)
|
||||
{
|
||||
if (leftmost)
|
||||
root->rb_leftmost = node;
|
||||
rb_insert_color(node, &root->rb_root);
|
||||
}
|
||||
|
||||
|
||||
static inline struct rb_node *
|
||||
rb_erase_cached(struct rb_node *node, struct rb_root_cached *root)
|
||||
{
|
||||
struct rb_node *leftmost = NULL;
|
||||
|
||||
if (root->rb_leftmost == node)
|
||||
leftmost = root->rb_leftmost = rb_next(node);
|
||||
|
||||
rb_erase(node, &root->rb_root);
|
||||
|
||||
return leftmost;
|
||||
}
|
||||
|
||||
static inline void rb_replace_node_cached(struct rb_node *victim,
|
||||
struct rb_node *new,
|
||||
struct rb_root_cached *root)
|
||||
{
|
||||
if (root->rb_leftmost == victim)
|
||||
root->rb_leftmost = new;
|
||||
rb_replace_node(victim, new, &root->rb_root);
|
||||
}
|
||||
|
||||
/*
|
||||
* The below helper functions use 2 operators with 3 different
|
||||
* calling conventions. The operators are related like:
|
||||
*
|
||||
* comp(a->key,b) < 0 := less(a,b)
|
||||
* comp(a->key,b) > 0 := less(b,a)
|
||||
* comp(a->key,b) == 0 := !less(a,b) && !less(b,a)
|
||||
*
|
||||
* If these operators define a partial order on the elements we make no
|
||||
* guarantee on which of the elements matching the key is found. See
|
||||
* rb_find().
|
||||
*
|
||||
* The reason for this is to allow the find() interface without requiring an
|
||||
* on-stack dummy object, which might not be feasible due to object size.
|
||||
*/
|
||||
|
||||
/**
|
||||
* rb_add_cached() - insert @node into the leftmost cached tree @tree
|
||||
* @node: node to insert
|
||||
* @tree: leftmost cached tree to insert @node into
|
||||
* @less: operator defining the (partial) node order
|
||||
*
|
||||
* Returns @node when it is the new leftmost, or NULL.
|
||||
*/
|
||||
static __always_inline struct rb_node *
|
||||
rb_add_cached(struct rb_node *node, struct rb_root_cached *tree,
|
||||
bool (*less)(struct rb_node *, const struct rb_node *))
|
||||
{
|
||||
struct rb_node **link = &tree->rb_root.rb_node;
|
||||
struct rb_node *parent = NULL;
|
||||
bool leftmost = true;
|
||||
|
||||
while (*link) {
|
||||
parent = *link;
|
||||
if (less(node, parent)) {
|
||||
link = &parent->rb_left;
|
||||
} else {
|
||||
link = &parent->rb_right;
|
||||
leftmost = false;
|
||||
}
|
||||
}
|
||||
|
||||
rb_link_node(node, parent, link);
|
||||
rb_insert_color_cached(node, tree, leftmost);
|
||||
|
||||
return leftmost ? node : NULL;
|
||||
}
|
||||
|
||||
/**
|
||||
* rb_add() - insert @node into @tree
|
||||
* @node: node to insert
|
||||
* @tree: tree to insert @node into
|
||||
* @less: operator defining the (partial) node order
|
||||
*/
|
||||
static __always_inline void
|
||||
rb_add(struct rb_node *node, struct rb_root *tree,
|
||||
bool (*less)(struct rb_node *, const struct rb_node *))
|
||||
{
|
||||
struct rb_node **link = &tree->rb_node;
|
||||
struct rb_node *parent = NULL;
|
||||
|
||||
while (*link) {
|
||||
parent = *link;
|
||||
if (less(node, parent))
|
||||
link = &parent->rb_left;
|
||||
else
|
||||
link = &parent->rb_right;
|
||||
}
|
||||
|
||||
rb_link_node(node, parent, link);
|
||||
rb_insert_color(node, tree);
|
||||
}
|
||||
|
||||
/**
|
||||
* rb_find_add() - find equivalent @node in @tree, or add @node
|
||||
* @node: node to look-for / insert
|
||||
* @tree: tree to search / modify
|
||||
* @cmp: operator defining the node order
|
||||
*
|
||||
* Returns the rb_node matching @node, or NULL when no match is found and @node
|
||||
* is inserted.
|
||||
*/
|
||||
static __always_inline struct rb_node *
|
||||
rb_find_add(struct rb_node *node, struct rb_root *tree,
|
||||
int (*cmp)(struct rb_node *, const struct rb_node *))
|
||||
{
|
||||
struct rb_node **link = &tree->rb_node;
|
||||
struct rb_node *parent = NULL;
|
||||
int c;
|
||||
|
||||
while (*link) {
|
||||
parent = *link;
|
||||
c = cmp(node, parent);
|
||||
|
||||
if (c < 0)
|
||||
link = &parent->rb_left;
|
||||
else if (c > 0)
|
||||
link = &parent->rb_right;
|
||||
else
|
||||
return parent;
|
||||
}
|
||||
|
||||
rb_link_node(node, parent, link);
|
||||
rb_insert_color(node, tree);
|
||||
return NULL;
|
||||
}
|
||||
|
||||
/**
|
||||
* rb_find() - find @key in tree @tree
|
||||
* @key: key to match
|
||||
* @tree: tree to search
|
||||
* @cmp: operator defining the node order
|
||||
*
|
||||
* Returns the rb_node matching @key or NULL.
|
||||
*/
|
||||
static __always_inline struct rb_node *
|
||||
rb_find(const void *key, const struct rb_root *tree,
|
||||
int (*cmp)(const void *key, const struct rb_node *))
|
||||
{
|
||||
struct rb_node *node = tree->rb_node;
|
||||
|
||||
while (node) {
|
||||
int c = cmp(key, node);
|
||||
|
||||
if (c < 0)
|
||||
node = node->rb_left;
|
||||
else if (c > 0)
|
||||
node = node->rb_right;
|
||||
else
|
||||
return node;
|
||||
}
|
||||
|
||||
return NULL;
|
||||
}
|
||||
|
||||
/**
|
||||
* rb_find_first() - find the first @key in @tree
|
||||
* @key: key to match
|
||||
* @tree: tree to search
|
||||
* @cmp: operator defining node order
|
||||
*
|
||||
* Returns the leftmost node matching @key, or NULL.
|
||||
*/
|
||||
static __always_inline struct rb_node *
|
||||
rb_find_first(const void *key, const struct rb_root *tree,
|
||||
int (*cmp)(const void *key, const struct rb_node *))
|
||||
{
|
||||
struct rb_node *node = tree->rb_node;
|
||||
struct rb_node *match = NULL;
|
||||
|
||||
while (node) {
|
||||
int c = cmp(key, node);
|
||||
|
||||
if (c <= 0) {
|
||||
if (!c)
|
||||
match = node;
|
||||
node = node->rb_left;
|
||||
} else if (c > 0) {
|
||||
node = node->rb_right;
|
||||
}
|
||||
}
|
||||
|
||||
return match;
|
||||
}
|
||||
|
||||
/**
|
||||
* rb_next_match() - find the next @key in @tree
|
||||
* @key: key to match
|
||||
* @tree: tree to search
|
||||
* @cmp: operator defining node order
|
||||
*
|
||||
* Returns the next node matching @key, or NULL.
|
||||
*/
|
||||
static __always_inline struct rb_node *
|
||||
rb_next_match(const void *key, struct rb_node *node,
|
||||
int (*cmp)(const void *key, const struct rb_node *))
|
||||
{
|
||||
node = rb_next(node);
|
||||
if (node && cmp(key, node))
|
||||
node = NULL;
|
||||
return node;
|
||||
}
|
||||
|
||||
/**
|
||||
* rb_for_each() - iterates a subtree matching @key
|
||||
* @node: iterator
|
||||
* @key: key to match
|
||||
* @tree: tree to search
|
||||
* @cmp: operator defining node order
|
||||
*/
|
||||
#define rb_for_each(node, key, tree, cmp) \
|
||||
for ((node) = rb_find_first((key), (tree), (cmp)); \
|
||||
(node); (node) = rb_next_match((key), (node), (cmp)))
|
||||
|
||||
#endif /* _LINUX_RBTREE_H */
|
||||
313
utils/src/rbtree_augmented.h
Normal file
313
utils/src/rbtree_augmented.h
Normal file
@@ -0,0 +1,313 @@
|
||||
/* SPDX-License-Identifier: GPL-2.0-or-later */
|
||||
/*
|
||||
Red Black Trees
|
||||
(C) 1999 Andrea Arcangeli <andrea@suse.de>
|
||||
(C) 2002 David Woodhouse <dwmw2@infradead.org>
|
||||
(C) 2012 Michel Lespinasse <walken@google.com>
|
||||
|
||||
|
||||
linux/include/linux/rbtree_augmented.h
|
||||
*/
|
||||
|
||||
#ifndef _LINUX_RBTREE_AUGMENTED_H
|
||||
#define _LINUX_RBTREE_AUGMENTED_H
|
||||
|
||||
/*
|
||||
* Please note - only struct rb_augment_callbacks and the prototypes for
|
||||
* rb_insert_augmented() and rb_erase_augmented() are intended to be public.
|
||||
* The rest are implementation details you are not expected to depend on.
|
||||
*
|
||||
* See Documentation/core-api/rbtree.rst for documentation and samples.
|
||||
*/
|
||||
|
||||
struct rb_augment_callbacks {
|
||||
void (*propagate)(struct rb_node *node, struct rb_node *stop);
|
||||
void (*copy)(struct rb_node *old, struct rb_node *new);
|
||||
void (*rotate)(struct rb_node *old, struct rb_node *new);
|
||||
};
|
||||
|
||||
extern void __rb_insert_augmented(struct rb_node *node, struct rb_root *root,
|
||||
void (*augment_rotate)(struct rb_node *old, struct rb_node *new));
|
||||
|
||||
/*
|
||||
* Fixup the rbtree and update the augmented information when rebalancing.
|
||||
*
|
||||
* On insertion, the user must update the augmented information on the path
|
||||
* leading to the inserted node, then call rb_link_node() as usual and
|
||||
* rb_insert_augmented() instead of the usual rb_insert_color() call.
|
||||
* If rb_insert_augmented() rebalances the rbtree, it will callback into
|
||||
* a user provided function to update the augmented information on the
|
||||
* affected subtrees.
|
||||
*/
|
||||
static inline void
|
||||
rb_insert_augmented(struct rb_node *node, struct rb_root *root,
|
||||
const struct rb_augment_callbacks *augment)
|
||||
{
|
||||
__rb_insert_augmented(node, root, augment->rotate);
|
||||
}
|
||||
|
||||
static inline void
|
||||
rb_insert_augmented_cached(struct rb_node *node,
|
||||
struct rb_root_cached *root, bool newleft,
|
||||
const struct rb_augment_callbacks *augment)
|
||||
{
|
||||
if (newleft)
|
||||
root->rb_leftmost = node;
|
||||
rb_insert_augmented(node, &root->rb_root, augment);
|
||||
}
|
||||
|
||||
/*
|
||||
* Template for declaring augmented rbtree callbacks (generic case)
|
||||
*
|
||||
* RBSTATIC: 'static' or empty
|
||||
* RBNAME: name of the rb_augment_callbacks structure
|
||||
* RBSTRUCT: struct type of the tree nodes
|
||||
* RBFIELD: name of struct rb_node field within RBSTRUCT
|
||||
* RBAUGMENTED: name of field within RBSTRUCT holding data for subtree
|
||||
* RBCOMPUTE: name of function that recomputes the RBAUGMENTED data
|
||||
*/
|
||||
|
||||
#define RB_DECLARE_CALLBACKS(RBSTATIC, RBNAME, \
|
||||
RBSTRUCT, RBFIELD, RBAUGMENTED, RBCOMPUTE) \
|
||||
static inline void \
|
||||
RBNAME ## _propagate(struct rb_node *rb, struct rb_node *stop) \
|
||||
{ \
|
||||
while (rb != stop) { \
|
||||
RBSTRUCT *node = rb_entry(rb, RBSTRUCT, RBFIELD); \
|
||||
if (RBCOMPUTE(node, true)) \
|
||||
break; \
|
||||
rb = rb_parent(&node->RBFIELD); \
|
||||
} \
|
||||
} \
|
||||
static inline void \
|
||||
RBNAME ## _copy(struct rb_node *rb_old, struct rb_node *rb_new) \
|
||||
{ \
|
||||
RBSTRUCT *old = rb_entry(rb_old, RBSTRUCT, RBFIELD); \
|
||||
RBSTRUCT *new = rb_entry(rb_new, RBSTRUCT, RBFIELD); \
|
||||
new->RBAUGMENTED = old->RBAUGMENTED; \
|
||||
} \
|
||||
static void \
|
||||
RBNAME ## _rotate(struct rb_node *rb_old, struct rb_node *rb_new) \
|
||||
{ \
|
||||
RBSTRUCT *old = rb_entry(rb_old, RBSTRUCT, RBFIELD); \
|
||||
RBSTRUCT *new = rb_entry(rb_new, RBSTRUCT, RBFIELD); \
|
||||
new->RBAUGMENTED = old->RBAUGMENTED; \
|
||||
RBCOMPUTE(old, false); \
|
||||
} \
|
||||
RBSTATIC const struct rb_augment_callbacks RBNAME = { \
|
||||
.propagate = RBNAME ## _propagate, \
|
||||
.copy = RBNAME ## _copy, \
|
||||
.rotate = RBNAME ## _rotate \
|
||||
};
|
||||
|
||||
/*
|
||||
* Template for declaring augmented rbtree callbacks,
|
||||
* computing RBAUGMENTED scalar as max(RBCOMPUTE(node)) for all subtree nodes.
|
||||
*
|
||||
* RBSTATIC: 'static' or empty
|
||||
* RBNAME: name of the rb_augment_callbacks structure
|
||||
* RBSTRUCT: struct type of the tree nodes
|
||||
* RBFIELD: name of struct rb_node field within RBSTRUCT
|
||||
* RBTYPE: type of the RBAUGMENTED field
|
||||
* RBAUGMENTED: name of RBTYPE field within RBSTRUCT holding data for subtree
|
||||
* RBCOMPUTE: name of function that returns the per-node RBTYPE scalar
|
||||
*/
|
||||
|
||||
#define RB_DECLARE_CALLBACKS_MAX(RBSTATIC, RBNAME, RBSTRUCT, RBFIELD, \
|
||||
RBTYPE, RBAUGMENTED, RBCOMPUTE) \
|
||||
static inline bool RBNAME ## _compute_max(RBSTRUCT *node, bool exit) \
|
||||
{ \
|
||||
RBSTRUCT *child; \
|
||||
RBTYPE max = RBCOMPUTE(node); \
|
||||
if (node->RBFIELD.rb_left) { \
|
||||
child = rb_entry(node->RBFIELD.rb_left, RBSTRUCT, RBFIELD); \
|
||||
if (child->RBAUGMENTED > max) \
|
||||
max = child->RBAUGMENTED; \
|
||||
} \
|
||||
if (node->RBFIELD.rb_right) { \
|
||||
child = rb_entry(node->RBFIELD.rb_right, RBSTRUCT, RBFIELD); \
|
||||
if (child->RBAUGMENTED > max) \
|
||||
max = child->RBAUGMENTED; \
|
||||
} \
|
||||
if (exit && node->RBAUGMENTED == max) \
|
||||
return true; \
|
||||
node->RBAUGMENTED = max; \
|
||||
return false; \
|
||||
} \
|
||||
RB_DECLARE_CALLBACKS(RBSTATIC, RBNAME, \
|
||||
RBSTRUCT, RBFIELD, RBAUGMENTED, RBNAME ## _compute_max)
|
||||
|
||||
|
||||
#define RB_RED 0
|
||||
#define RB_BLACK 1
|
||||
|
||||
#define __rb_parent(pc) ((struct rb_node *)(pc & ~3))
|
||||
|
||||
#define __rb_color(pc) ((pc) & 1)
|
||||
#define __rb_is_black(pc) __rb_color(pc)
|
||||
#define __rb_is_red(pc) (!__rb_color(pc))
|
||||
#define rb_color(rb) __rb_color((rb)->__rb_parent_color)
|
||||
#define rb_is_red(rb) __rb_is_red((rb)->__rb_parent_color)
|
||||
#define rb_is_black(rb) __rb_is_black((rb)->__rb_parent_color)
|
||||
|
||||
static inline void rb_set_parent(struct rb_node *rb, struct rb_node *p)
|
||||
{
|
||||
rb->__rb_parent_color = rb_color(rb) | (unsigned long)p;
|
||||
}
|
||||
|
||||
static inline void rb_set_parent_color(struct rb_node *rb,
|
||||
struct rb_node *p, int color)
|
||||
{
|
||||
rb->__rb_parent_color = (unsigned long)p | color;
|
||||
}
|
||||
|
||||
static inline void
|
||||
__rb_change_child(struct rb_node *old, struct rb_node *new,
|
||||
struct rb_node *parent, struct rb_root *root)
|
||||
{
|
||||
if (parent) {
|
||||
if (parent->rb_left == old)
|
||||
WRITE_ONCE(parent->rb_left, new);
|
||||
else
|
||||
WRITE_ONCE(parent->rb_right, new);
|
||||
} else
|
||||
WRITE_ONCE(root->rb_node, new);
|
||||
}
|
||||
|
||||
static inline void
|
||||
__rb_change_child_rcu(struct rb_node *old, struct rb_node *new,
|
||||
struct rb_node *parent, struct rb_root *root)
|
||||
{
|
||||
if (parent) {
|
||||
if (parent->rb_left == old)
|
||||
rcu_assign_pointer(parent->rb_left, new);
|
||||
else
|
||||
rcu_assign_pointer(parent->rb_right, new);
|
||||
} else
|
||||
rcu_assign_pointer(root->rb_node, new);
|
||||
}
|
||||
|
||||
extern void __rb_erase_color(struct rb_node *parent, struct rb_root *root,
|
||||
void (*augment_rotate)(struct rb_node *old, struct rb_node *new));
|
||||
|
||||
static __always_inline struct rb_node *
|
||||
__rb_erase_augmented(struct rb_node *node, struct rb_root *root,
|
||||
const struct rb_augment_callbacks *augment)
|
||||
{
|
||||
struct rb_node *child = node->rb_right;
|
||||
struct rb_node *tmp = node->rb_left;
|
||||
struct rb_node *parent, *rebalance;
|
||||
unsigned long pc;
|
||||
|
||||
if (!tmp) {
|
||||
/*
|
||||
* Case 1: node to erase has no more than 1 child (easy!)
|
||||
*
|
||||
* Note that if there is one child it must be red due to 5)
|
||||
* and node must be black due to 4). We adjust colors locally
|
||||
* so as to bypass __rb_erase_color() later on.
|
||||
*/
|
||||
pc = node->__rb_parent_color;
|
||||
parent = __rb_parent(pc);
|
||||
__rb_change_child(node, child, parent, root);
|
||||
if (child) {
|
||||
child->__rb_parent_color = pc;
|
||||
rebalance = NULL;
|
||||
} else
|
||||
rebalance = __rb_is_black(pc) ? parent : NULL;
|
||||
tmp = parent;
|
||||
} else if (!child) {
|
||||
/* Still case 1, but this time the child is node->rb_left */
|
||||
tmp->__rb_parent_color = pc = node->__rb_parent_color;
|
||||
parent = __rb_parent(pc);
|
||||
__rb_change_child(node, tmp, parent, root);
|
||||
rebalance = NULL;
|
||||
tmp = parent;
|
||||
} else {
|
||||
struct rb_node *successor = child, *child2;
|
||||
|
||||
tmp = child->rb_left;
|
||||
if (!tmp) {
|
||||
/*
|
||||
* Case 2: node's successor is its right child
|
||||
*
|
||||
* (n) (s)
|
||||
* / \ / \
|
||||
* (x) (s) -> (x) (c)
|
||||
* \
|
||||
* (c)
|
||||
*/
|
||||
parent = successor;
|
||||
child2 = successor->rb_right;
|
||||
|
||||
augment->copy(node, successor);
|
||||
} else {
|
||||
/*
|
||||
* Case 3: node's successor is leftmost under
|
||||
* node's right child subtree
|
||||
*
|
||||
* (n) (s)
|
||||
* / \ / \
|
||||
* (x) (y) -> (x) (y)
|
||||
* / /
|
||||
* (p) (p)
|
||||
* / /
|
||||
* (s) (c)
|
||||
* \
|
||||
* (c)
|
||||
*/
|
||||
do {
|
||||
parent = successor;
|
||||
successor = tmp;
|
||||
tmp = tmp->rb_left;
|
||||
} while (tmp);
|
||||
child2 = successor->rb_right;
|
||||
WRITE_ONCE(parent->rb_left, child2);
|
||||
WRITE_ONCE(successor->rb_right, child);
|
||||
rb_set_parent(child, successor);
|
||||
|
||||
augment->copy(node, successor);
|
||||
augment->propagate(parent, successor);
|
||||
}
|
||||
|
||||
tmp = node->rb_left;
|
||||
WRITE_ONCE(successor->rb_left, tmp);
|
||||
rb_set_parent(tmp, successor);
|
||||
|
||||
pc = node->__rb_parent_color;
|
||||
tmp = __rb_parent(pc);
|
||||
__rb_change_child(node, successor, tmp, root);
|
||||
|
||||
if (child2) {
|
||||
rb_set_parent_color(child2, parent, RB_BLACK);
|
||||
rebalance = NULL;
|
||||
} else {
|
||||
rebalance = rb_is_black(successor) ? parent : NULL;
|
||||
}
|
||||
successor->__rb_parent_color = pc;
|
||||
tmp = successor;
|
||||
}
|
||||
|
||||
augment->propagate(tmp, NULL);
|
||||
return rebalance;
|
||||
}
|
||||
|
||||
static __always_inline void
|
||||
rb_erase_augmented(struct rb_node *node, struct rb_root *root,
|
||||
const struct rb_augment_callbacks *augment)
|
||||
{
|
||||
struct rb_node *rebalance = __rb_erase_augmented(node, root, augment);
|
||||
if (rebalance)
|
||||
__rb_erase_color(rebalance, root, augment->rotate);
|
||||
}
|
||||
|
||||
static __always_inline void
|
||||
rb_erase_augmented_cached(struct rb_node *node, struct rb_root_cached *root,
|
||||
const struct rb_augment_callbacks *augment)
|
||||
{
|
||||
if (root->rb_leftmost == node)
|
||||
root->rb_leftmost = rb_next(node);
|
||||
rb_erase_augmented(node, &root->rb_root, augment);
|
||||
}
|
||||
|
||||
#endif /* _LINUX_RBTREE_AUGMENTED_H */
|
||||
34
utils/src/rbtree_types.h
Normal file
34
utils/src/rbtree_types.h
Normal file
@@ -0,0 +1,34 @@
|
||||
/* SPDX-License-Identifier: GPL-2.0-or-later */
|
||||
#ifndef _LINUX_RBTREE_TYPES_H
|
||||
#define _LINUX_RBTREE_TYPES_H
|
||||
|
||||
struct rb_node {
|
||||
unsigned long __rb_parent_color;
|
||||
struct rb_node *rb_right;
|
||||
struct rb_node *rb_left;
|
||||
} __attribute__((aligned(sizeof(long))));
|
||||
/* The alignment might seem pointless, but allegedly CRIS needs it */
|
||||
|
||||
struct rb_root {
|
||||
struct rb_node *rb_node;
|
||||
};
|
||||
|
||||
/*
|
||||
* Leftmost-cached rbtrees.
|
||||
*
|
||||
* We do not cache the rightmost node based on footprint
|
||||
* size vs number of potential users that could benefit
|
||||
* from O(1) rb_last(). Just not worth it, users that want
|
||||
* this feature can always implement the logic explicitly.
|
||||
* Furthermore, users that want to cache both pointers may
|
||||
* find it a bit asymmetric, but that's ok.
|
||||
*/
|
||||
struct rb_root_cached {
|
||||
struct rb_root rb_root;
|
||||
struct rb_node *rb_leftmost;
|
||||
};
|
||||
|
||||
#define RB_ROOT (struct rb_root) { NULL, }
|
||||
#define RB_ROOT_CACHED (struct rb_root_cached) { {NULL, }, NULL }
|
||||
|
||||
#endif
|
||||
@@ -44,3 +44,37 @@ int srch_decode_entry(void *buf, struct scoutfs_srch_entry *sre,
|
||||
|
||||
return tot;
|
||||
}
|
||||
|
||||
static int encode_u64(__le64 *buf, u64 val)
|
||||
{
|
||||
int bytes;
|
||||
|
||||
val = (val << 1) ^ ((s64)val >> 63); /* shift sign extend */
|
||||
bytes = (fls64(val) + 7) >> 3;
|
||||
|
||||
put_unaligned_le64(val, buf);
|
||||
return bytes;
|
||||
}
|
||||
|
||||
int srch_encode_entry(void *buf, struct scoutfs_srch_entry *sre, struct scoutfs_srch_entry *prev)
|
||||
{
|
||||
u64 diffs[] = {
|
||||
le64_to_cpu(sre->hash) - le64_to_cpu(prev->hash),
|
||||
le64_to_cpu(sre->ino) - le64_to_cpu(prev->ino),
|
||||
le64_to_cpu(sre->id) - le64_to_cpu(prev->id),
|
||||
};
|
||||
u16 lengths = 0;
|
||||
int bytes;
|
||||
int tot = 2;
|
||||
int i;
|
||||
|
||||
for (i = 0; i < array_size(diffs); i++) {
|
||||
bytes = encode_u64(buf + tot, diffs[i]);
|
||||
lengths |= bytes << (i << 2);
|
||||
tot += bytes;
|
||||
}
|
||||
|
||||
put_unaligned_le16(lengths, buf);
|
||||
|
||||
return tot;
|
||||
}
|
||||
|
||||
@@ -3,5 +3,6 @@
|
||||
|
||||
int srch_decode_entry(void *buf, struct scoutfs_srch_entry *sre,
|
||||
struct scoutfs_srch_entry *prev);
|
||||
int srch_encode_entry(void *buf, struct scoutfs_srch_entry *sre, struct scoutfs_srch_entry *prev);
|
||||
|
||||
#endif
|
||||
|
||||
@@ -70,6 +70,8 @@ do { \
|
||||
#define container_of(ptr, type, memb) \
|
||||
((type *)((void *)(ptr) - offsetof(type, memb)))
|
||||
|
||||
#define NSEC_PER_SEC 1000000000
|
||||
|
||||
#define BITS_PER_LONG (sizeof(long) * 8)
|
||||
#define U8_MAX ((u8)~0ULL)
|
||||
#define U16_MAX ((u16)~0ULL)
|
||||
@@ -82,6 +84,7 @@ do { \
|
||||
\
|
||||
(_x == 0 ? 0 : 64 - __builtin_clzll(_x)); \
|
||||
})
|
||||
#define fls64(x) flsll(x)
|
||||
|
||||
#define ilog2(x) \
|
||||
({ \
|
||||
@@ -99,6 +102,16 @@ emit_get_unaligned_le(16)
|
||||
emit_get_unaligned_le(32)
|
||||
emit_get_unaligned_le(64)
|
||||
|
||||
#define emit_put_unaligned_le(nr) \
|
||||
static inline void put_unaligned_le##nr(u##nr val, void *buf) \
|
||||
{ \
|
||||
__le##nr x = cpu_to_le##nr(val); \
|
||||
memcpy(buf, &x, sizeof(x)); \
|
||||
}
|
||||
emit_put_unaligned_le(16)
|
||||
emit_put_unaligned_le(32)
|
||||
emit_put_unaligned_le(64)
|
||||
|
||||
/*
|
||||
* return -1,0,+1 based on the memcmp comparison of the minimum of their
|
||||
* two lengths. If their min shared bytes are equal but the lengths
|
||||
|
||||
Reference in New Issue
Block a user