mirror of
https://github.com/tendermint/tendermint.git
synced 2026-01-10 06:57:24 +00:00
See #5936 and #5938 for background. The plan was initially to have `DialNext()` and `EvictNext()` return a channel. However, implementing this became unnecessarily complicated and error-prone. As an example, the channel would be both consumed and populated (via method calls) by the same driving method (e.g. `Router.dialPeers()`) which could easily cause deadlocks where a method call blocked while sending on the channel that the caller itself was responsible for consuming (but couldn't since it was busy making the method call). It would also require a set of goroutines in the peer manager that would interact with the goroutines in the router in non-obvious ways, and fully populating the channel on startup could cause deadlocks with other startup tasks. Several issues like these made the solution hard to reason about. I therefore simply made `DialNext()` and `EvictNext()` block until the next peer was available, using internal triggers to wake these methods up in a non-blocking fashion when any relevant state changes occurred. This proved much simpler to reason about, since there are no goroutines in the peer manager (except for trivial retry timers), nor any blocking channel sends, and it instead relies entirely on the existing goroutine structure of the router for concurrency. This also happens to be the same pattern used by the `Transport.Accept()` API, following Go stdlib conventions, so all router goroutines end up using a consistent pattern as well.
p2p
The p2p package provides an abstraction around peer-to-peer communication.
Docs:
- Connection for details on how connections and multiplexing work
- Peer for details on peer ID, handshakes, and peer exchange
- Node for details about different types of nodes and how they should work
- Pex for details on peer discovery and exchange
- Config for details on some config option