Files
tendermint/scripts/keymigrate/migrate.go
2022-07-15 21:14:18 -04:00

655 lines
17 KiB
Go

// Package keymigrate translates all legacy formatted keys to their
// new components.
//
// The key migration operation as implemented provides a potential
// model for database migration operations. Crucially, the migration
// as implemented does not depend on any tendermint code.
package keymigrate
import (
"bytes"
"context"
"encoding/binary"
"encoding/hex"
"fmt"
"math/rand"
"runtime"
"strconv"
"github.com/creachadair/taskgroup"
"github.com/google/orderedcode"
dbm "github.com/tendermint/tm-db"
)
type (
keyID []byte
migrateFunc func(keyID) (keyID, error)
)
func getAllLegacyKeys(db dbm.DB, storeName string) ([]keyID, error) {
var out []keyID
iter, err := db.Iterator(nil, nil)
if err != nil {
return nil, err
}
for ; iter.Valid(); iter.Next() {
k := iter.Key()
// make sure it's a key that we'd expect to see in
// this database, with a legacy format, and skip all
// other keys, to make it safe to resume the
// migration.
kt, err := checkKeyType(k, storeName)
if err != nil {
return nil, err
}
if !kt.isLegacy() {
continue
}
// Make an explicit copy, since not all tm-db backends do.
out = append(out, []byte(string(k)))
}
if err = iter.Error(); err != nil {
return nil, err
}
if err = iter.Close(); err != nil {
return nil, err
}
return out, nil
}
// keyType is an enumeration for the structural type of a key.
type keyType int
func (t keyType) isLegacy() bool { return t != nonLegacyKey }
const (
nonLegacyKey keyType = iota // non-legacy key (presumed already converted)
consensusParamsKey
abciResponsesKey
validatorsKey
stateStoreKey // state storage record
blockMetaKey // H:
blockPartKey // P:
commitKey // C:
seenCommitKey // SC:
blockHashKey // BH:
lightSizeKey // size
lightBlockKey // lb/
evidenceCommittedKey // \x00
evidencePendingKey // \x01
txHeightKey // tx.height/... (special case)
abciEventKey // name/value/height/index
txHashKey // 32-byte transaction hash (unprefixed)
)
var prefixes = []struct {
prefix []byte
ktype keyType
check func(keyID) bool
}{
{[]byte(legacyConsensusParamsPrefix), consensusParamsKey, nil},
{[]byte(legacyAbciResponsePrefix), abciResponsesKey, nil},
{[]byte(legacyValidatorPrefix), validatorsKey, nil},
{[]byte(legacyStateKeyPrefix), stateStoreKey, nil},
{[]byte(legacyBlockMetaPrefix), blockMetaKey, nil},
{[]byte(legacyBlockPartPrefix), blockPartKey, nil},
{[]byte(legacyCommitPrefix), commitKey, nil},
{[]byte(legacySeenCommitPrefix), seenCommitKey, nil},
{[]byte(legacyBlockHashPrefix), blockHashKey, nil},
{[]byte(legacyLightSizePrefix), lightSizeKey, nil},
{[]byte(legacyLightBlockPrefix), lightBlockKey, nil},
{[]byte(legacyEvidenceComittedPrefix), evidenceCommittedKey, checkEvidenceKey},
{[]byte(legacyEvidencePendingPrefix), evidencePendingKey, checkEvidenceKey},
}
const (
legacyConsensusParamsPrefix = "consensusParamsKey:"
legacyAbciResponsePrefix = "abciResponsesKey:"
legacyValidatorPrefix = "validatorsKey:"
legacyStateKeyPrefix = "stateKey"
legacyBlockMetaPrefix = "H:"
legacyBlockPartPrefix = "P:"
legacyCommitPrefix = "C:"
legacySeenCommitPrefix = "SC:"
legacyBlockHashPrefix = "BH:"
legacyLightSizePrefix = "size"
legacyLightBlockPrefix = "lb/"
legacyEvidenceComittedPrefix = "\x00"
legacyEvidencePendingPrefix = "\x01"
)
type migrationDefinition struct {
name string
storeName string
prefix []byte
ktype keyType
check func(keyID) bool
transform migrateFunc
}
var migrations = []migrationDefinition{
{
name: "consensus-params",
storeName: "state",
prefix: []byte(legacyConsensusParamsPrefix),
ktype: consensusParamsKey,
transform: func(key keyID) (keyID, error) {
val, err := strconv.Atoi(string(key[19:]))
if err != nil {
return nil, err
}
return orderedcode.Append(nil, int64(6), int64(val))
},
},
{
name: "abci-responses",
storeName: "state",
prefix: []byte(legacyAbciResponsePrefix),
ktype: abciResponsesKey,
transform: func(key keyID) (keyID, error) {
val, err := strconv.Atoi(string(key[17:]))
if err != nil {
return nil, err
}
return orderedcode.Append(nil, int64(7), int64(val))
},
},
{
name: "validators",
storeName: "state",
prefix: []byte(legacyValidatorPrefix),
ktype: validatorsKey,
transform: func(key keyID) (keyID, error) {
val, err := strconv.Atoi(string(key[14:]))
if err != nil {
return nil, err
}
return orderedcode.Append(nil, int64(5), int64(val))
},
},
{
name: "tendermint-state",
storeName: "state",
prefix: []byte(legacyStateKeyPrefix),
ktype: stateStoreKey,
transform: func(key keyID) (keyID, error) {
return orderedcode.Append(nil, int64(8))
},
},
{
name: "block-meta",
storeName: "blockstore",
prefix: []byte(legacyBlockMetaPrefix),
ktype: blockMetaKey,
transform: func(key keyID) (keyID, error) {
val, err := strconv.Atoi(string(key[2:]))
if err != nil {
return nil, err
}
return orderedcode.Append(nil, int64(0), int64(val))
},
},
{
name: "block-part",
storeName: "blockstore",
prefix: []byte(legacyBlockPartPrefix),
ktype: blockPartKey,
transform: func(key keyID) (keyID, error) {
parts := bytes.Split(key[2:], []byte(":"))
if len(parts) != 2 {
return nil, fmt.Errorf("block parts key has %d rather than 2 components",
len(parts))
}
valOne, err := strconv.Atoi(string(parts[0]))
if err != nil {
return nil, err
}
valTwo, err := strconv.Atoi(string(parts[1]))
if err != nil {
return nil, err
}
return orderedcode.Append(nil, int64(1), int64(valOne), int64(valTwo))
},
},
{
name: "commit",
storeName: "blockstore",
prefix: []byte(legacyCommitPrefix),
ktype: commitKey,
transform: func(key keyID) (keyID, error) {
val, err := strconv.Atoi(string(key[2:]))
if err != nil {
return nil, err
}
return orderedcode.Append(nil, int64(2), int64(val))
},
},
{
name: "seen-commit",
storeName: "blockstore",
prefix: []byte(legacySeenCommitPrefix),
ktype: seenCommitKey,
transform: func(key keyID) (keyID, error) {
val, err := strconv.Atoi(string(key[3:]))
if err != nil {
return nil, err
}
return orderedcode.Append(nil, int64(3), int64(val))
},
},
{
name: "block-hash",
storeName: "blockstore",
prefix: []byte(legacyBlockHashPrefix),
ktype: blockHashKey,
transform: func(key keyID) (keyID, error) {
hash := string(key[3:])
if len(hash)%2 == 1 {
hash = "0" + hash
}
val, err := hex.DecodeString(hash)
if err != nil {
return nil, err
}
return orderedcode.Append(nil, int64(4), string(val))
},
},
{
name: "light-size",
storeName: "light",
prefix: []byte(legacyLightSizePrefix),
ktype: lightSizeKey,
transform: func(key keyID) (keyID, error) {
return orderedcode.Append(nil, int64(12))
},
},
{
name: "light-block",
storeName: "light",
prefix: []byte(legacyLightBlockPrefix),
ktype: lightBlockKey,
transform: func(key keyID) (keyID, error) {
if len(key) < 24 {
return nil, fmt.Errorf("light block evidence %q in invalid format", string(key))
}
val, err := strconv.Atoi(string(key[len(key)-20:]))
if err != nil {
return nil, err
}
return orderedcode.Append(nil, int64(11), int64(val))
},
},
{
name: "evidence-pending",
storeName: "evidence",
prefix: []byte(legacyEvidencePendingPrefix),
ktype: evidencePendingKey,
transform: func(key keyID) (keyID, error) {
return convertEvidence(key, 10)
},
},
{
name: "evidence-committed",
storeName: "evidence",
prefix: []byte(legacyEvidenceComittedPrefix),
ktype: evidenceCommittedKey,
transform: func(key keyID) (keyID, error) {
return convertEvidence(key, 9)
},
},
{
name: "event-tx",
storeName: "tx_index",
prefix: nil,
ktype: txHeightKey,
transform: func(key keyID) (keyID, error) {
parts := bytes.Split(key, []byte("/"))
if len(parts) != 4 {
return nil, fmt.Errorf("key has %d parts rather than 4", len(parts))
}
parts = parts[1:] // drop prefix
elems := make([]interface{}, 0, len(parts)+1)
elems = append(elems, "tx.height")
for idx, pt := range parts {
val, err := strconv.Atoi(string(pt))
if err != nil {
return nil, err
}
if idx == 0 {
elems = append(elems, fmt.Sprintf("%d", val))
} else {
elems = append(elems, int64(val))
}
}
return orderedcode.Append(nil, elems...)
},
},
{
name: "event-abci",
storeName: "tx_index",
prefix: nil,
ktype: abciEventKey,
transform: func(key keyID) (keyID, error) {
parts := bytes.Split(key, []byte("/"))
elems := make([]interface{}, 0, 4)
if len(parts) == 4 {
elems = append(elems, string(parts[0]), string(parts[1]))
val, err := strconv.Atoi(string(parts[2]))
if err != nil {
return nil, err
}
elems = append(elems, int64(val))
val2, err := strconv.Atoi(string(parts[3]))
if err != nil {
return nil, err
}
elems = append(elems, int64(val2))
} else {
elems = append(elems, string(parts[0]))
parts = parts[1:]
val, err := strconv.Atoi(string(parts[len(parts)-1]))
if err != nil {
return nil, err
}
val2, err := strconv.Atoi(string(parts[len(parts)-2]))
if err != nil {
return nil, err
}
appKey := bytes.Join(parts[:len(parts)-3], []byte("/"))
elems = append(elems, string(appKey), int64(val), int64(val2))
}
return orderedcode.Append(nil, elems...)
},
},
{
name: "event-tx-hash",
storeName: "tx_index",
prefix: nil,
ktype: txHashKey,
transform: func(key keyID) (keyID, error) {
return orderedcode.Append(nil, "tx.hash", string(key))
},
},
}
// checkKeyType classifies a candidate key based on its structure.
func checkKeyType(key keyID, storeName string) (keyType, error) {
var migrations []migrationDefinition
for _, m := range migrations {
if m.storeName != storeName {
continue
}
if m.prefix == nil && storeName == "tx_index" {
// A legacy event key has the form:
//
// <name> / <value> / <height> / <index>
//
// Transaction hashes are stored as a raw binary hash with no prefix.
//
// Note, though, that nothing prevents event names or values from containing
// additional "/" separators, so the parse has to be forgiving.
parts := bytes.Split(key, []byte("/"))
if len(parts) >= 4 {
// Special case for tx.height.
if len(parts) == 4 && bytes.Equal(parts[0], []byte("tx.height")) {
return txHeightKey, nil
}
// The name cannot be empty, but we don't know where the name ends and
// the value begins, so insist that there be something.
var n int
for _, part := range parts[:len(parts)-2] {
n += len(part)
}
// Check whether the last two fields could be .../height/index.
if n > 0 && isDecimal(parts[len(parts)-1]) && isDecimal(parts[len(parts)-2]) {
return abciEventKey, nil
}
}
// If we get here, it's not an event key. Treat it as a hash if it is the
// right length. Note that it IS possible this could collide with the
// translation of some other key (though not a hash, since encoded hashes
// will be longer). The chance of that is small, but there is nothing we can
// do to detect it.
if len(key) == 32 {
return txHashKey, nil
}
} else if bytes.HasPrefix(key, m.prefix) {
if m.check == nil || m.check(key) {
return m.ktype, nil
}
// we have an expected legacy prefix but that
// didn't pass the check. This probably means
// the evidence data is currupt (based on the
// defined migrations) best to error here.
return -1, fmt.Errorf("in store %q, key %q exists but is not a valid key of type %q", storeName, key, m.ktype)
}
// if we get here, the key in question is either
// migrated or of a different type. We can't break
// here because there are more than one key type in a
// specific database, so we have to keep iterating.
}
// if we've looked at every migration and not identified a key
// type, then the key has been migrated *or* we (possibly, but
// very unlikely have data that is in the wrong place or the
// sign of corruption.) In either case we should not attempt
// more migrations at this point
return nonLegacyKey, nil
}
// isDecimal reports whether buf is a non-empty sequence of Unicode decimal
// digits.
func isDecimal(buf []byte) bool {
for _, c := range buf {
if c < '0' || c > '9' {
return false
}
}
return len(buf) != 0
}
func migrateKey(key keyID, storeName string) (keyID, error) {
kt, err := checkKeyType(key, storeName)
if err != nil {
return nil, err
}
for _, migration := range migrations {
if migration.storeName != storeName {
continue
}
if kt == migration.ktype {
return migration.transform(key)
}
}
return nil, fmt.Errorf("key %q is in the wrong format", string(key))
}
func convertEvidence(key keyID, newPrefix int64) ([]byte, error) {
parts := bytes.Split(key[1:], []byte("/"))
if len(parts) != 2 {
return nil, fmt.Errorf("evidence key is malformed with %d parts not 2",
len(parts))
}
hb, err := hex.DecodeString(string(parts[0]))
if err != nil {
return nil, err
}
evidenceHash, err := hex.DecodeString(string(parts[1]))
if err != nil {
return nil, err
}
return orderedcode.Append(nil, newPrefix, binary.BigEndian.Uint64(hb), string(evidenceHash))
}
// checkEvidenceKey reports whether a candidate key with one of the legacy
// evidence prefixes has the correct structure for a legacy evidence key.
//
// This check is needed because transaction hashes are stored without a prefix,
// so checking the one-byte prefix alone is not enough to distinguish them.
// Legacy evidence keys are suffixed with a string of the format:
//
// "%0.16X/%X"
//
// where the first element is the height and the second is the hash. Thus, we
// check
func checkEvidenceKey(key keyID) bool {
parts := bytes.SplitN(key[1:], []byte("/"), 2)
if len(parts) != 2 || len(parts[0]) != 16 || !isHex(parts[0]) || !isHex(parts[1]) {
return false
}
return true
}
func isHex(data []byte) bool {
for _, b := range data {
if ('0' <= b && b <= '9') || ('a' <= b && b <= 'f') || ('A' <= b && b <= 'F') {
continue
}
return false
}
return len(data) != 0
}
func getMigrationFunc(storeName string, key keyID) (*migrationDefinition, error) {
for idx := range migrations {
migration := migrations[idx]
if migration.storeName == storeName {
if migration.prefix == nil {
return &migration, nil
}
if bytes.HasPrefix(migration.prefix, key) {
return &migration, nil
}
}
}
return nil, fmt.Errorf("no migration defined for data store %q and key %q", storeName, key)
}
func replaceKey(db dbm.DB, storeName string, key keyID) error {
migration, err := getMigrationFunc(storeName, key)
if err != nil {
return err
}
gooseFn := migration.transform
exists, err := db.Has(key)
if err != nil {
return err
}
if !exists {
return nil
}
newKey, err := gooseFn(key)
if err != nil {
return err
}
val, err := db.Get(key)
if err != nil {
return err
}
batch := db.NewBatch()
if err = batch.Set(newKey, val); err != nil {
return err
}
if err = batch.Delete(key); err != nil {
return err
}
// 10% of the time, force a write to disk, but mostly don't,
// because it's faster.
if rand.Intn(100)%10 == 0 { // nolint:gosec
if err = batch.WriteSync(); err != nil {
return err
}
} else {
if err = batch.Write(); err != nil {
return err
}
}
if err = batch.Close(); err != nil {
return err
}
return nil
}
// Migrate converts all legacy key formats to new key formats. The
// operation is idempotent, so it's safe to resume a failed
// operation. The operation is somewhat parallelized, relying on the
// concurrency safety of the underlying databases.
//
// Migrate has "continue on error" semantics and will iterate through
// all legacy keys attempt to migrate them, and will collect all
// errors and will return only at the end of the operation.
//
// The context allows for a safe termination of the operation
// (e.g connected to a singal handler,) to abort the operation
// in-between migration operations.
func Migrate(ctx context.Context, storeName string, db dbm.DB) error {
keys, err := getAllLegacyKeys(db, storeName)
if err != nil {
return err
}
var errs []string
g, start := taskgroup.New(func(err error) error {
errs = append(errs, err.Error())
return err
}).Limit(runtime.NumCPU())
for _, key := range keys {
key := key
start(func() error {
if err := ctx.Err(); err != nil {
return err
}
return replaceKey(db, storeName, key)
})
}
if g.Wait() != nil {
return fmt.Errorf("encountered errors during migration: %q", errs)
}
return nil
}