Compare commits

..

2 Commits

Author SHA1 Message Date
Ben McClelland
0b521a943e dont mark skipped tests as failure 2021-01-15 10:45:57 -07:00
Ben McClelland
36a3f04566 skip xfstests instead of fail if repo not specified 2021-01-15 10:45:57 -07:00
168 changed files with 6447 additions and 20601 deletions

128
README.md
View File

@@ -1,24 +1,130 @@
# Introduction
scoutfs is a clustered in-kernel Linux filesystem designed to support
large archival systems. It features additional interfaces and metadata
so that archive agents can perform their maintenance workflows without
walking all the files in the namespace. Its cluster support lets
deployments add nodes to satisfy archival tier bandwidth targets.
scoutfs is a clustered in-kernel Linux filesystem designed and built
from the ground up to support large archival systems.
The design goal is to reach file populations in the trillions, with the
archival bandwidth to match, while remaining operational and responsive.
Its key differentiating features are:
Highlights of the design and implementation include:
- Integrated consistent indexing accelerates archival maintenance operations
- Commit logs allow nodes to write concurrently without contention
It meets best of breed expectations:
* Fully consistent POSIX semantics between nodes
* Rich metadata to ensure the integrity of metadata references
* Atomic transactions to maintain consistent persistent structures
* Integrated archival metadata replaces syncing to external databases
* Dynamic seperation of resources lets nodes write in parallel
* 64bit throughout; no limits on file or directory sizes or counts
* First class kernel implementation for high performance and low latency
* Open GPLv2 implementation
Learn more in the [white paper](https://docs.wixstatic.com/ugd/aaa89b_88a5cc84be0b4d1a90f60d8900834d28.pdf).
# Current Status
**Alpha Open Source Development**
scoutfs is under heavy active development. We're developing it in the
open to give the community an opportunity to affect the design and
implementation.
The core architectural design elements are in place. Much surrounding
functionality hasn't been implemented. It's appropriate for early
adopters and interested developers, not for production use.
In that vein, expect significant incompatible changes to both the format
of network messages and persistent structures. To avoid mistakes the
implementation currently calculates a hash of the format and ioctl
header files in the source tree. The kernel module will refuse to mount
a volume created by userspace utilities with a mismatched hash, and it
will refuse to connect to a remote node with a mismatched hash. This
means having to unmount, mkfs, and remount everything across many
functional changes. Once the format is nailed down we'll wire up
forward and back compat machinery and remove this temporary safety
measure.
The current kernel module is developed against the RHEL/CentOS 7.x
kernel to minimize the friction of developing and testing with partners'
existing infrastructure. Once we're happy with the design we'll shift
development to the upstream kernel while maintaining distro
compatibility branches.
# Community Mailing List
Please join us on the open scoutfs-devel@scoutfs.org [mailing list
hosted on Google Groups](https://groups.google.com/a/scoutfs.org/forum/#!forum/scoutfs-devel)
for all discussion of scoutfs.
# Quick Start
**This following a very rough example of the procedure to get up and
running, experience will be needed to fill in the gaps. We're happy to
help on the mailing list.**
The requirements for running scoutfs on a small cluster are:
1. One or more nodes running x86-64 CentOS/RHEL 7.4 (or 7.3)
2. Access to two shared block devices
3. IPv4 connectivity between the nodes
The steps for getting scoutfs mounted and operational are:
1. Get the kernel module running on the nodes
2. Make a new filesystem on the devices with the userspace utilities
3. Mount the devices on all the nodes
In this example we run all of these commands on three nodes. The names
of the block devices are the same on all the nodes.
1. Get the Kernel Module and Userspace Binaries
* Either use snapshot RPMs built from git by Versity:
```shell
rpm -i https://scoutfs.s3-us-west-2.amazonaws.com/scoutfs-repo-0.0.1-1.el7_4.noarch.rpm
yum install scoutfs-utils kmod-scoutfs
```
* Or use the binaries built from checked out git repositories:
```shell
yum install kernel-devel
git clone git@github.com:versity/scoutfs.git
make -C scoutfs
modprobe libcrc32c
insmod scoutfs/kmod/src/scoutfs.ko
alias scoutfs=$PWD/scoutfs/utils/src/scoutfs
```
2. Make a New Filesystem (**destroys contents, no questions asked**)
We specify that two of our three nodes must be present to form a
quorum for the system to function.
```shell
scoutfs mkfs -Q 2 /dev/meta_dev /dev/data_dev
```
3. Mount the Filesystem
Each mounting node provides its local IP address on which it will run
an internal server for the other mounts if it is elected the leader by
the quorum.
```shell
mkdir /mnt/scoutfs
mount -t scoutfs -o server_addr=$NODE_ADDR,metadev_path=/dev/meta_dev /dev/data_dev /mnt/scoutfs
```
4. For Kicks, Observe the Metadata Change Index
The `meta_seq` index tracks the inodes that are changed in each
transaction.
```shell
scoutfs walk-inodes meta_seq 0 -1 /mnt/scoutfs
touch /mnt/scoutfs/one; sync
scoutfs walk-inodes meta_seq 0 -1 /mnt/scoutfs
touch /mnt/scoutfs/two; sync
scoutfs walk-inodes meta_seq 0 -1 /mnt/scoutfs
touch /mnt/scoutfs/one; sync
scoutfs walk-inodes meta_seq 0 -1 /mnt/scoutfs
```

View File

@@ -1,233 +0,0 @@
Versity ScoutFS Release Notes
=============================
---
v1.11
\
*Feb 2, 2023*
Fixed a free extent processing error that could prevent mount from
proceeding when free data extents were sufficiently fragmented. It now
properly handle very fragmented free extent maps.
Fixed a statfs server processing race that could return spurious errors
and shut down the server. With the race closed statfs processing is
reliable.
Fixed a rare livelock in the move\_blocks ioctl. With the right
relationship between ioctl arguments and eventual file extent items the
core loop in the move\_blocks ioctl could get stuck looping on an extent
item and never return. The loop exit conditions were fixed and the loop
will always advance through all extents.
Changed the 'print' scoutfs commands to flush the block cache for the
devices. It was inconvenient to expect cache flushing to be a separate
step to ensure consistency with remote node writes.
---
v1.10
\
*Dec 7, 2022*
Fixed a potential directory entry cache management deadlock that could
occur when many nodes performed heavy metadata write loads across shared
directories and their child subdirectories. The deadlock could halt
invalidation progress on a node which could then stop use of locks that
needed invalidation on that node which would result in almost all tasks
hanging on those locks that would never make progress.
Fixed a circumstance where metadata change sequence index item
modification could leave behind old stale metadata sequence items. The
duplication case required concurrent metadata updates across mounts with
particular open transaction patterns so the duplicate items are rare.
They resulted in a small amount of additional load when walking change
indexes but had no effect on correctness.
Fixed a rare case where sparse file extension might not write partial
blocks of zeros which was found in testing. This required using
truncate to extend files past file sizes that end in partial blocks
along with the right transaction commit and memory reclaim patterns.
This never affected regular non-sparse files nor files prepopulated with
fallocate.
---
v1.9
\
*Oct 29, 2022*
Fix VFS cached directory entry consistency verification that could cause
spurious "no such file or directory" (ENOENT) errors from rename over
NFS under certain conditions. The problem was only every with the
consistency of in-memory cached dentry objects, persistent data was
correct and eventual eviction of the bad cached objects would stop
generating the errors.
---
v1.8
\
*Oct 18, 2022*
Add support for Linux POSIX Access Control Lists, as described in
acl(5). Mount options are added to enable ("acl") and disable ("noacl")
support. The default is to support ACLs. ACLs are stored in the
existing extended attribute scheme so adding support is does not require
a format change.
Add options to control data extent preallocation. The default behavior
does not change. The options can relax the limits on preallocation
which will then trigger under more write patterns and increase the risk
of preallocated space which is never used. The options are described in
scoutfs(5).
---
v1.7
\
*Aug 26, 2022*
* **Fixed possible persistent errors moving freed data extents**
\
Fixed a case where the server could hit persistent errors trying to
move a client's freed extents in one commit. The client had to free
a large number of extents that occupied distant positions in the
global free extent btree. Very large fragmented files could cause
this. The server now moves the freed extents in multiple commits and
can always ensure forward progress.
* **Fixed possible persistent errors from freed duplicate extents**
\
Background orphan deletion wasn't properly synchronizing with
foreground tasks deleting very large files. If a deletion took long
enough then background deletion could also attempt to delete inode items
while the deletion was making progress. This could create duplicate
deletions of data extent items which causes the server to abort when
it later discovers the duplicate extents as it merges free lists.
---
v1.6
\
*Jul 7, 2022*
* **Fix memory leaks in rare corner cases**
\
Analysis tools found a few corner cases that leaked small structures,
generally around error handling or startup and shutdown.
* **Add --skip-likely-huge scoutfs print command option**
\
Add an option to scoutfs print to reduce the size of the output
so that it can be used to see system-wide metadata without being
overwhelmed by file-level details.
---
v1.5
\
*Jun 21, 2022*
* **Fix persistent error during server startup**
\
Fixed a case where the server would always hit a consistent error on
seartup, preventing the system from mounting. This required a rare
but valid state across the clients.
* **Fix a client hang that would lead to fencing**
\
The client module's use of in-kernel networking was missing annotation
that could lead to communication hanging. The server would fence the
client when it stopped communicating. This could be identified by the
server fencing a client after it disconnected with no attempt by the
client to reconnect.
---
v1.4
\
*May 6, 2022*
* **Fix possible client crash during server failover**
\
Fixed a narrow window during server failover and lock recovery that
could cause a client mount to believe that it had an inconsistent item
cache and panic. This required very specific lock state and messaging
patterns between multiple mounts and multiple servers which made it
unlikely to occur in the field.
---
v1.3
\
*Apr 7, 2022*
* **Fix rare server instability under heavy load**
\
Fixed a case of server instability under heavy load due to concurrent
work fully exhausting metadata block allocation pools reserved for a
single server transaction. This would cause brief interruption as the
server shutdown and the next server started up and made progress as
pending work was retried.
* **Fix slow fencing preventing server startup**
\
If a server had to process many fence requests with a slow fencing
mechanism it could be interrupted before it finished. The server
now makes sure heartbeat messages are sent while it is making progress
on fencing requests so that other quorum members don't interrupt the
process.
* **Performance improvement in getxattr and setxattr**
\
Kernel allocation patterns in the getxattr and setxattr
implementations were causing significant contention between CPUs. Their
allocation strategy was changed so that concurrent tasks can call these
xattr methods without degrading performance.
---
v1.2
\
*Mar 14, 2022*
* **Fix deadlock between fallocate() and read() system calls**
\
Fixed a lock inversion that could cause two tasks to deadlock if they
performed fallocate() and read() on a file at the same time. The
deadlock was uninterruptible so the machine needed to be rebooted. This
was relatively rare as fallocate() is usually used to prepare files
before they're used.
* **Fix instability from heavy file deletion workloads**
\
Fixed rare circumstances under which background file deletion cleanup
tasks could try to delete a file while it is being deleted by another
task. Heavy load across multiple nodes, either many files being deleted
or large files being deleted, increased the chances of this happening.
Heavy staging could cause this problem because staging can create many
internal temporary files that need to be deleted.
---
v1.1
\
*Feb 4, 2022*
* **Add scoutfs(1) change-quorum-config command**
\
Add a change-quorum-config command to scoutfs(1) to change the quorum
configuration stored in the metadata device while the file system is
unmounted. This can be used to change the mounts that will
participate in quorum and the IP addresses they use.
* **Fix Rare Risk of Item Cache Corruption**
\
Code review found a rare potential source of item cache corruption.
If this happened it would look as though deleted parts of the filesystem
returned, but only at the time they were deleted. Old deleted items are
not affected. This problem only affected the item cache, never
persistent storage. Unmounting and remounting would drop the bad item
cache and resync it with the correct persistent data.
---
v1.0
\
*Nov 8, 2021*
* **Initial Release**
\
Version 1.0 marks the first GA release.

View File

@@ -16,7 +16,11 @@ SCOUTFS_GIT_DESCRIBE := \
$(shell git describe --all --abbrev=6 --long 2>/dev/null || \
echo no-git)
SCOUTFS_FORMAT_HASH := \
$(shell cat src/format.h src/ioctl.h | md5sum | cut -b1-16)
SCOUTFS_ARGS := SCOUTFS_GIT_DESCRIBE=$(SCOUTFS_GIT_DESCRIBE) \
SCOUTFS_FORMAT_HASH=$(SCOUTFS_FORMAT_HASH) \
CONFIG_SCOUTFS_FS=m -C $(SK_KSRC) M=$(CURDIR)/src \
EXTRA_CFLAGS="-Werror"

View File

@@ -1,6 +1,7 @@
obj-$(CONFIG_SCOUTFS_FS) := scoutfs.o
CFLAGS_super.o = -DSCOUTFS_GIT_DESCRIBE=\"$(SCOUTFS_GIT_DESCRIBE)\"
CFLAGS_super.o = -DSCOUTFS_GIT_DESCRIBE=\"$(SCOUTFS_GIT_DESCRIBE)\" \
-DSCOUTFS_FORMAT_HASH=0x$(SCOUTFS_FORMAT_HASH)LLU
CFLAGS_scoutfs_trace.o = -I$(src) # define_trace.h double include
@@ -8,7 +9,6 @@ CFLAGS_scoutfs_trace.o = -I$(src) # define_trace.h double include
-include $(src)/Makefile.kernelcompat
scoutfs-y += \
acl.o \
avl.o \
alloc.o \
block.o \
@@ -19,7 +19,6 @@ scoutfs-y += \
dir.o \
export.o \
ext.o \
fence.o \
file.o \
forest.o \
inode.o \
@@ -29,11 +28,9 @@ scoutfs-y += \
lock_server.o \
msg.o \
net.o \
omap.o \
options.o \
per_task.o \
quorum.o \
recov.o \
scoutfs_trace.o \
server.o \
sort_priv.o \
@@ -44,7 +41,6 @@ scoutfs-y += \
trans.o \
triggers.o \
tseq.o \
volopt.o \
xattr.o
#

View File

@@ -34,12 +34,3 @@ endif
ifneq (,$(shell grep 'FMODE_KABI_ITERATE' include/linux/fs.h))
ccflags-y += -DKC_FMODE_KABI_ITERATE
endif
#
# v4.7-rc2-23-g0d4d717f2583
#
# Added user_ns argument to posix_acl_valid
#
ifneq (,$(shell grep 'posix_acl_valid.*user_ns,' include/linux/posix_acl.h))
ccflags-y += -DKC_POSIX_ACL_VALID_USER_NS
endif

View File

@@ -1,355 +0,0 @@
/*
* Copyright (C) 2022 Versity Software, Inc. All rights reserved.
*
* This program is free software; you can redistribute it and/or
* modify it under the terms of the GNU General Public
* License v2 as published by the Free Software Foundation.
*
* This program is distributed in the hope that it will be useful,
* but WITHOUT ANY WARRANTY; without even the implied warranty of
* MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU
* General Public License for more details.
*/
#include <linux/kernel.h>
#include <linux/fs.h>
#include <linux/slab.h>
#include <linux/xattr.h>
#include <linux/posix_acl.h>
#include <linux/posix_acl_xattr.h>
#include "format.h"
#include "super.h"
#include "scoutfs_trace.h"
#include "xattr.h"
#include "acl.h"
#include "inode.h"
#include "trans.h"
/*
* POSIX draft ACLs are stored as full xattr items with the entries
* encoded as the kernel's posix_acl_xattr_{header,entry} value structs.
*
* They're accessed and modified via user facing synthetic xattrs, iops
* calls from the kernel, during inode mode changes, and during inode
* creation.
*
* ACL access devolves into xattr access which is relatively expensive
* so we maintain the cached native form in the vfs inode. We drop the
* cache in lock invalidation which means that cached acl access must
* always be performed under cluster locking.
*/
static int acl_xattr_name_len(int type, char **name, size_t *name_len)
{
int ret = 0;
switch (type) {
case ACL_TYPE_ACCESS:
*name = XATTR_NAME_POSIX_ACL_ACCESS;
if (name_len)
*name_len = sizeof(XATTR_NAME_POSIX_ACL_ACCESS) - 1;
break;
case ACL_TYPE_DEFAULT:
*name = XATTR_NAME_POSIX_ACL_DEFAULT;
if (name_len)
*name_len = sizeof(XATTR_NAME_POSIX_ACL_DEFAULT) - 1;
break;
default:
ret = -EINVAL;
break;
}
return ret;
}
struct posix_acl *scoutfs_get_acl_locked(struct inode *inode, int type, struct scoutfs_lock *lock)
{
struct posix_acl *acl;
char *value = NULL;
char *name;
int ret;
if (!IS_POSIXACL(inode))
return NULL;
acl = get_cached_acl(inode, type);
if (acl != ACL_NOT_CACHED)
return acl;
ret = acl_xattr_name_len(type, &name, NULL);
if (ret < 0)
return ERR_PTR(ret);
ret = scoutfs_xattr_get_locked(inode, name, NULL, 0, lock);
if (ret > 0) {
value = kzalloc(ret, GFP_NOFS);
if (!value)
ret = -ENOMEM;
else
ret = scoutfs_xattr_get_locked(inode, name, value, ret, lock);
}
if (ret > 0) {
acl = posix_acl_from_xattr(&init_user_ns, value, ret);
} else if (ret == -ENODATA || ret == 0) {
acl = NULL;
} else {
acl = ERR_PTR(ret);
}
/* can set null negative cache */
if (!IS_ERR(acl))
set_cached_acl(inode, type, acl);
kfree(value);
return acl;
}
struct posix_acl *scoutfs_get_acl(struct inode *inode, int type)
{
struct super_block *sb = inode->i_sb;
struct scoutfs_lock *lock = NULL;
struct posix_acl *acl;
int ret;
if (!IS_POSIXACL(inode))
return NULL;
ret = scoutfs_lock_inode(sb, SCOUTFS_LOCK_READ, 0, inode, &lock);
if (ret < 0) {
acl = ERR_PTR(ret);
} else {
acl = scoutfs_get_acl_locked(inode, type, lock);
scoutfs_unlock(sb, lock, SCOUTFS_LOCK_READ);
}
return acl;
}
/*
* The caller has acquired the locks and dirtied the inode, they'll
* update the inode item if we return 0.
*/
int scoutfs_set_acl_locked(struct inode *inode, struct posix_acl *acl, int type,
struct scoutfs_lock *lock, struct list_head *ind_locks)
{
static const struct scoutfs_xattr_prefix_tags tgs = {0,}; /* never scoutfs. prefix */
bool set_mode = false;
char *value = NULL;
umode_t new_mode;
size_t name_len;
char *name;
int size = 0;
int ret;
ret = acl_xattr_name_len(type, &name, &name_len);
if (ret < 0)
return ret;
switch (type) {
case ACL_TYPE_ACCESS:
if (acl) {
ret = posix_acl_update_mode(inode, &new_mode, &acl);
if (ret < 0)
goto out;
set_mode = true;
}
break;
case ACL_TYPE_DEFAULT:
if (!S_ISDIR(inode->i_mode)) {
ret = acl ? -EINVAL : 0;
goto out;
}
break;
}
if (acl) {
size = posix_acl_xattr_size(acl->a_count);
value = kmalloc(size, GFP_NOFS);
if (!value) {
ret = -ENOMEM;
goto out;
}
ret = posix_acl_to_xattr(&init_user_ns, acl, value, size);
if (ret < 0)
goto out;
}
ret = scoutfs_xattr_set_locked(inode, name, name_len, value, size, 0, &tgs,
lock, NULL, ind_locks);
if (ret == 0 && set_mode) {
inode->i_mode = new_mode;
if (!value) {
/* can be setting an acl that only affects mode, didn't need xattr */
inode_inc_iversion(inode);
inode->i_ctime = CURRENT_TIME;
}
}
out:
if (!ret)
set_cached_acl(inode, type, acl);
kfree(value);
return ret;
}
int scoutfs_set_acl(struct inode *inode, struct posix_acl *acl, int type)
{
struct super_block *sb = inode->i_sb;
struct scoutfs_lock *lock = NULL;
LIST_HEAD(ind_locks);
int ret;
ret = scoutfs_lock_inode(sb, SCOUTFS_LOCK_WRITE, SCOUTFS_LKF_REFRESH_INODE, inode, &lock) ?:
scoutfs_inode_index_lock_hold(inode, &ind_locks, false, true);
if (ret == 0) {
ret = scoutfs_dirty_inode_item(inode, lock) ?:
scoutfs_set_acl_locked(inode, acl, type, lock, &ind_locks);
if (ret == 0)
scoutfs_update_inode_item(inode, lock, &ind_locks);
scoutfs_release_trans(sb);
scoutfs_inode_index_unlock(sb, &ind_locks);
}
scoutfs_unlock(sb, lock, SCOUTFS_LOCK_WRITE);
return ret;
}
int scoutfs_acl_get_xattr(struct dentry *dentry, const char *name, void *value, size_t size,
int type)
{
struct posix_acl *acl;
int ret = 0;
if (!IS_POSIXACL(dentry->d_inode))
return -EOPNOTSUPP;
acl = scoutfs_get_acl(dentry->d_inode, type);
if (IS_ERR(acl))
return PTR_ERR(acl);
if (acl == NULL)
return -ENODATA;
ret = posix_acl_to_xattr(&init_user_ns, acl, value, size);
posix_acl_release(acl);
return ret;
}
int scoutfs_acl_set_xattr(struct dentry *dentry, const char *name, const void *value, size_t size,
int flags, int type)
{
struct posix_acl *acl = NULL;
int ret;
if (!inode_owner_or_capable(dentry->d_inode))
return -EPERM;
if (!IS_POSIXACL(dentry->d_inode))
return -EOPNOTSUPP;
if (value) {
acl = posix_acl_from_xattr(&init_user_ns, value, size);
if (IS_ERR(acl))
return PTR_ERR(acl);
if (acl) {
ret = kc_posix_acl_valid(&init_user_ns, acl);
if (ret)
goto out;
}
}
ret = scoutfs_set_acl(dentry->d_inode, acl, type);
out:
posix_acl_release(acl);
return ret;
}
/*
* Apply the parent's default acl to new inodes access acl and inherit
* it as the default for new directories. The caller holds locks and a
* transaction.
*/
int scoutfs_init_acl_locked(struct inode *inode, struct inode *dir,
struct scoutfs_lock *lock, struct scoutfs_lock *dir_lock,
struct list_head *ind_locks)
{
struct posix_acl *acl = NULL;
int ret = 0;
if (!S_ISLNK(inode->i_mode)) {
if (IS_POSIXACL(dir)) {
acl = scoutfs_get_acl_locked(dir, ACL_TYPE_DEFAULT, dir_lock);
if (IS_ERR(acl))
return PTR_ERR(acl);
}
if (!acl)
inode->i_mode &= ~current_umask();
}
if (IS_POSIXACL(dir) && acl) {
if (S_ISDIR(inode->i_mode)) {
ret = scoutfs_set_acl_locked(inode, acl, ACL_TYPE_DEFAULT,
lock, ind_locks);
if (ret)
goto out;
}
ret = posix_acl_create(&acl, GFP_NOFS, &inode->i_mode);
if (ret < 0)
return ret;
if (ret > 0)
ret = scoutfs_set_acl_locked(inode, acl, ACL_TYPE_ACCESS,
lock, ind_locks);
} else {
cache_no_acl(inode);
}
out:
posix_acl_release(acl);
return ret;
}
/*
* Update the access ACL based on a newly set mode. If we return an
* error then the xattr wasn't changed.
*
* Annoyingly, setattr_copy has logic that transforms the final set mode
* that we want to use to update the acl. But we don't want to modify
* the other inode fields while discovering the resulting mode. We're
* relying on acl_chmod not caring about the transformation (currently
* just clears sgid). It would be better if we could get the resulting
* mode to give to acl_chmod without modifying the other inode fields.
*
* The caller has the inode mutex, a cluster lock, transaction, and will
* update the inode item if we return success.
*/
int scoutfs_acl_chmod_locked(struct inode *inode, struct iattr *attr,
struct scoutfs_lock *lock, struct list_head *ind_locks)
{
struct posix_acl *acl;
int ret = 0;
if (!IS_POSIXACL(inode) || !(attr->ia_valid & ATTR_MODE))
return 0;
if (S_ISLNK(inode->i_mode))
return -EOPNOTSUPP;
acl = scoutfs_get_acl_locked(inode, ACL_TYPE_ACCESS, lock);
if (IS_ERR_OR_NULL(acl))
return PTR_ERR(acl);
ret = posix_acl_chmod(&acl, GFP_KERNEL, attr->ia_mode);
if (ret)
return ret;
ret = scoutfs_set_acl_locked(inode, acl, ACL_TYPE_ACCESS, lock, ind_locks);
posix_acl_release(acl);
return ret;
}

View File

@@ -1,18 +0,0 @@
#ifndef _SCOUTFS_ACL_H_
#define _SCOUTFS_ACL_H_
struct posix_acl *scoutfs_get_acl(struct inode *inode, int type);
struct posix_acl *scoutfs_get_acl_locked(struct inode *inode, int type, struct scoutfs_lock *lock);
int scoutfs_set_acl(struct inode *inode, struct posix_acl *acl, int type);
int scoutfs_set_acl_locked(struct inode *inode, struct posix_acl *acl, int type,
struct scoutfs_lock *lock, struct list_head *ind_locks);
int scoutfs_acl_get_xattr(struct dentry *dentry, const char *name, void *value, size_t size,
int type);
int scoutfs_acl_set_xattr(struct dentry *dentry, const char *name, const void *value, size_t size,
int flags, int type);
int scoutfs_acl_chmod_locked(struct inode *inode, struct iattr *attr,
struct scoutfs_lock *lock, struct list_head *ind_locks);
int scoutfs_init_acl_locked(struct inode *inode, struct inode *dir,
struct scoutfs_lock *lock, struct scoutfs_lock *dir_lock,
struct list_head *ind_locks);
#endif

File diff suppressed because it is too large Load Diff

View File

@@ -19,11 +19,14 @@
(128ULL * 1024 * 1024 >> SCOUTFS_BLOCK_SM_SHIFT)
/*
* The default size that we'll try to preallocate. This is trying to
* hit the limit of large efficient device writes while minimizing
* wasted preallocation that is never used.
* The largest aligned region that we'll try to allocate at the end of
* the file as it's extended. This is also limited to the current file
* size so we can only waste at most twice the total file size when
* files are less than this. We try to keep this around the point of
* diminishing returns in streaming performance of common data devices
* to limit waste.
*/
#define SCOUTFS_DATA_PREALLOC_DEFAULT_BLOCKS \
#define SCOUTFS_DATA_EXTEND_PREALLOC_LIMIT \
(8ULL * 1024 * 1024 >> SCOUTFS_BLOCK_SM_SHIFT)
/*
@@ -35,10 +38,6 @@
#define SCOUTFS_ALLOC_DATA_LG_THRESH \
(8ULL * 1024 * 1024 >> SCOUTFS_BLOCK_SM_SHIFT)
/* the client will force commits if data allocators get too low */
#define SCOUTFS_ALLOC_DATA_REFILL_THRESH \
((256ULL * 1024 * 1024) >> SCOUTFS_BLOCK_SM_SHIFT)
/*
* Fill client alloc roots to the target when they fall below the lo
* threshold.
@@ -56,16 +55,15 @@
#define SCOUTFS_SERVER_DATA_FILL_LO \
(1ULL * 1024 * 1024 * 1024 >> SCOUTFS_BLOCK_SM_SHIFT)
/*
* Log merge meta allocations are only used for one request and will
* never use more than the dirty limit.
* Each of the server meta_alloc roots will try to keep a minimum amount
* of free blocks. The server will swap roots when its current avail
* falls below the threshold while the freed root is still above it. It
* must have room for all the largest allocation attempted in a
* transaction on the server.
*/
#define SCOUTFS_LOG_MERGE_DIRTY_BYTE_LIMIT (64ULL * 1024 * 1024)
/* a few extra blocks for alloc blocks */
#define SCOUTFS_SERVER_MERGE_FILL_TARGET \
((SCOUTFS_LOG_MERGE_DIRTY_BYTE_LIMIT >> SCOUTFS_BLOCK_LG_SHIFT) + 4)
#define SCOUTFS_SERVER_MERGE_FILL_LO SCOUTFS_SERVER_MERGE_FILL_TARGET
#define SCOUTFS_SERVER_META_ALLOC_MIN \
(SCOUTFS_SERVER_META_FILL_TARGET * 2)
/*
* A run-time use of a pair of persistent avail/freed roots as a
@@ -74,8 +72,7 @@
* transaction.
*/
struct scoutfs_alloc {
/* writers rarely modify list_head avail/freed. readers often check for _meta_alloc_low */
seqlock_t seqlock;
spinlock_t lock;
struct mutex mutex;
struct scoutfs_block *dirty_avail_bl;
struct scoutfs_block *dirty_freed_bl;
@@ -127,14 +124,7 @@ int scoutfs_free_data(struct super_block *sb, struct scoutfs_alloc *alloc,
int scoutfs_alloc_move(struct super_block *sb, struct scoutfs_alloc *alloc,
struct scoutfs_block_writer *wri,
struct scoutfs_alloc_root *dst,
struct scoutfs_alloc_root *src, u64 total,
__le64 *exclusive, __le64 *vacant, u64 zone_blocks, u64 meta_budget);
int scoutfs_alloc_insert(struct super_block *sb, struct scoutfs_alloc *alloc,
struct scoutfs_block_writer *wri, struct scoutfs_alloc_root *root,
u64 start, u64 len);
int scoutfs_alloc_remove(struct super_block *sb, struct scoutfs_alloc *alloc,
struct scoutfs_block_writer *wri, struct scoutfs_alloc_root *root,
u64 start, u64 len);
struct scoutfs_alloc_root *src, u64 total);
int scoutfs_alloc_fill_list(struct super_block *sb,
struct scoutfs_alloc *alloc,
@@ -155,23 +145,11 @@ int scoutfs_alloc_splice_list(struct super_block *sb,
bool scoutfs_alloc_meta_low(struct super_block *sb,
struct scoutfs_alloc *alloc, u32 nr);
void scoutfs_alloc_meta_remaining(struct scoutfs_alloc *alloc, u32 *avail_total, u32 *freed_space);
bool scoutfs_alloc_meta_low_since(struct scoutfs_alloc *alloc, u32 avail_start, u32 freed_start,
u32 budget, u32 nr);
bool scoutfs_alloc_test_flag(struct super_block *sb,
struct scoutfs_alloc *alloc, u32 flag);
typedef int (*scoutfs_alloc_foreach_cb_t)(struct super_block *sb, void *arg,
int owner, u64 id,
bool meta, bool avail, u64 blocks);
int scoutfs_alloc_foreach(struct super_block *sb,
scoutfs_alloc_foreach_cb_t cb, void *arg);
int scoutfs_alloc_foreach_super(struct super_block *sb, struct scoutfs_super_block *super,
scoutfs_alloc_foreach_cb_t cb, void *arg);
typedef void (*scoutfs_alloc_extent_cb_t)(struct super_block *sb, void *cb_arg,
struct scoutfs_extent *ext);
int scoutfs_alloc_extents_cb(struct super_block *sb, struct scoutfs_alloc_root *root,
scoutfs_alloc_extent_cb_t cb, void *cb_arg);
#endif

File diff suppressed because it is too large Load Diff

View File

@@ -13,27 +13,27 @@ struct scoutfs_block {
void *priv;
};
struct scoutfs_block_saved_refs {
struct scoutfs_block_ref refs[2];
};
__le32 scoutfs_block_calc_crc(struct scoutfs_block_header *hdr, u32 size);
bool scoutfs_block_valid_crc(struct scoutfs_block_header *hdr, u32 size);
bool scoutfs_block_valid_ref(struct super_block *sb,
struct scoutfs_block_header *hdr,
__le64 seq, __le64 blkno);
#define DECLARE_SAVED_REFS(name) \
struct scoutfs_block_saved_refs name = {{{0,}}}
int scoutfs_block_check_stale(struct super_block *sb, int ret,
struct scoutfs_block_saved_refs *saved,
struct scoutfs_block_ref *a, struct scoutfs_block_ref *b);
int scoutfs_block_read_ref(struct super_block *sb, struct scoutfs_block_ref *ref, u32 magic,
struct scoutfs_block **bl_ret);
struct scoutfs_block *scoutfs_block_create(struct super_block *sb, u64 blkno);
struct scoutfs_block *scoutfs_block_read(struct super_block *sb, u64 blkno);
void scoutfs_block_invalidate(struct super_block *sb, struct scoutfs_block *bl);
bool scoutfs_block_consistent_ref(struct super_block *sb,
struct scoutfs_block *bl,
__le64 seq, __le64 blkno, u32 magic);
void scoutfs_block_put(struct super_block *sb, struct scoutfs_block *bl);
void scoutfs_block_writer_init(struct super_block *sb,
struct scoutfs_block_writer *wri);
int scoutfs_block_dirty_ref(struct super_block *sb, struct scoutfs_alloc *alloc,
struct scoutfs_block_writer *wri, struct scoutfs_block_ref *ref,
u32 magic, struct scoutfs_block **bl_ret,
u64 dirty_blkno, u64 *ref_blkno);
void scoutfs_block_writer_mark_dirty(struct super_block *sb,
struct scoutfs_block_writer *wri,
struct scoutfs_block *bl);
bool scoutfs_block_writer_is_dirty(struct super_block *sb,
struct scoutfs_block *bl);
int scoutfs_block_writer_write(struct super_block *sb,
struct scoutfs_block_writer *wri);
void scoutfs_block_writer_forget_all(struct super_block *sb,

File diff suppressed because it is too large Load Diff

View File

@@ -20,15 +20,13 @@ struct scoutfs_btree_item_ref {
/* caller gives an item to the callback */
typedef int (*scoutfs_btree_item_cb)(struct super_block *sb,
struct scoutfs_key *key, u64 seq, u8 flags,
struct scoutfs_key *key,
void *val, int val_len, void *arg);
/* simple singly-linked list of items */
struct scoutfs_btree_item_list {
struct scoutfs_btree_item_list *next;
struct scoutfs_key key;
u64 seq;
u8 flags;
int val_len;
u8 val[0];
};
@@ -84,49 +82,6 @@ int scoutfs_btree_insert_list(struct super_block *sb,
struct scoutfs_btree_root *root,
struct scoutfs_btree_item_list *lst);
int scoutfs_btree_parent_range(struct super_block *sb,
struct scoutfs_btree_root *root,
struct scoutfs_key *key,
struct scoutfs_key *start,
struct scoutfs_key *end);
int scoutfs_btree_get_parent(struct super_block *sb,
struct scoutfs_btree_root *root,
struct scoutfs_key *key,
struct scoutfs_btree_root *par_root);
int scoutfs_btree_set_parent(struct super_block *sb,
struct scoutfs_alloc *alloc,
struct scoutfs_block_writer *wri,
struct scoutfs_btree_root *root,
struct scoutfs_key *key,
struct scoutfs_btree_root *par_root);
int scoutfs_btree_rebalance(struct super_block *sb,
struct scoutfs_alloc *alloc,
struct scoutfs_block_writer *wri,
struct scoutfs_btree_root *root,
struct scoutfs_key *key);
/* merge input is a list of roots */
struct scoutfs_btree_root_head {
struct list_head head;
struct scoutfs_btree_root root;
};
int scoutfs_btree_merge(struct super_block *sb,
struct scoutfs_alloc *alloc,
struct scoutfs_block_writer *wri,
struct scoutfs_key *start,
struct scoutfs_key *end,
struct scoutfs_key *next_ret,
struct scoutfs_btree_root *root,
struct list_head *input_list,
bool subtree, int dirty_limit, int alloc_low);
int scoutfs_btree_free_blocks(struct super_block *sb,
struct scoutfs_alloc *alloc,
struct scoutfs_block_writer *wri,
struct scoutfs_key *key,
struct scoutfs_btree_root *root, int free_budget);
void scoutfs_btree_put_iref(struct scoutfs_btree_item_ref *iref);
#endif

View File

@@ -31,15 +31,16 @@
#include "net.h"
#include "endian_swap.h"
#include "quorum.h"
#include "omap.h"
#include "trans.h"
/*
* The client is responsible for maintaining a connection to the server.
* This includes managing quorum elections that determine which client
* should run the server that all the clients connect to.
*/
#define CLIENT_CONNECT_DELAY_MS (MSEC_PER_SEC / 10)
#define CLIENT_CONNECT_TIMEOUT_MS (1 * MSEC_PER_SEC)
#define CLIENT_QUORUM_TIMEOUT_MS (5 * MSEC_PER_SEC)
struct client_info {
struct super_block *sb;
@@ -49,9 +50,9 @@ struct client_info {
struct workqueue_struct *workq;
struct delayed_work connect_dwork;
unsigned long connect_delay_jiffies;
u64 server_term;
u64 greeting_umb;
bool sending_farewell;
int farewell_error;
@@ -117,6 +118,23 @@ int scoutfs_client_get_roots(struct super_block *sb,
NULL, 0, roots, sizeof(*roots));
}
int scoutfs_client_advance_seq(struct super_block *sb, u64 *seq)
{
struct client_info *client = SCOUTFS_SB(sb)->client_info;
__le64 before = cpu_to_le64p(seq);
__le64 after;
int ret;
ret = scoutfs_net_sync_request(sb, client->conn,
SCOUTFS_NET_CMD_ADVANCE_SEQ,
&before, sizeof(before),
&after, sizeof(after));
if (ret == 0)
*seq = le64_to_cpu(after);
return ret;
}
int scoutfs_client_get_last_seq(struct super_block *sb, u64 *seq)
{
struct client_info *client = SCOUTFS_SB(sb)->client_info;
@@ -138,7 +156,7 @@ static int client_lock_response(struct super_block *sb,
void *resp, unsigned int resp_len,
int error, void *data)
{
if (resp_len != sizeof(struct scoutfs_net_lock))
if (resp_len != sizeof(struct scoutfs_net_lock_grant_response))
return -EINVAL;
/* XXX error? */
@@ -203,120 +221,6 @@ int scoutfs_client_srch_commit_compact(struct super_block *sb,
res, sizeof(*res), NULL, 0);
}
int scoutfs_client_get_log_merge(struct super_block *sb,
struct scoutfs_log_merge_request *req)
{
struct client_info *client = SCOUTFS_SB(sb)->client_info;
return scoutfs_net_sync_request(sb, client->conn,
SCOUTFS_NET_CMD_GET_LOG_MERGE,
NULL, 0, req, sizeof(*req));
}
int scoutfs_client_commit_log_merge(struct super_block *sb,
struct scoutfs_log_merge_complete *comp)
{
struct client_info *client = SCOUTFS_SB(sb)->client_info;
return scoutfs_net_sync_request(sb, client->conn,
SCOUTFS_NET_CMD_COMMIT_LOG_MERGE,
comp, sizeof(*comp), NULL, 0);
}
int scoutfs_client_send_omap_response(struct super_block *sb, u64 id,
struct scoutfs_open_ino_map *map)
{
struct client_info *client = SCOUTFS_SB(sb)->client_info;
return scoutfs_net_response(sb, client->conn, SCOUTFS_NET_CMD_OPEN_INO_MAP,
id, 0, map, sizeof(*map));
}
/* The client is receiving an omap request from the server */
static int client_open_ino_map(struct super_block *sb, struct scoutfs_net_connection *conn,
u8 cmd, u64 id, void *arg, u16 arg_len)
{
if (arg_len != sizeof(struct scoutfs_open_ino_map_args))
return -EINVAL;
return scoutfs_omap_client_handle_request(sb, id, arg);
}
/* The client is sending an omap request to the server */
int scoutfs_client_open_ino_map(struct super_block *sb, u64 group_nr,
struct scoutfs_open_ino_map *map)
{
struct client_info *client = SCOUTFS_SB(sb)->client_info;
struct scoutfs_open_ino_map_args args = {
.group_nr = cpu_to_le64(group_nr),
.req_id = 0,
};
return scoutfs_net_sync_request(sb, client->conn, SCOUTFS_NET_CMD_OPEN_INO_MAP,
&args, sizeof(args), map, sizeof(*map));
}
/* The client is asking the server for the current volume options */
int scoutfs_client_get_volopt(struct super_block *sb, struct scoutfs_volume_options *volopt)
{
struct client_info *client = SCOUTFS_SB(sb)->client_info;
return scoutfs_net_sync_request(sb, client->conn, SCOUTFS_NET_CMD_GET_VOLOPT,
NULL, 0, volopt, sizeof(*volopt));
}
/* The client is asking the server to update volume options */
int scoutfs_client_set_volopt(struct super_block *sb, struct scoutfs_volume_options *volopt)
{
struct client_info *client = SCOUTFS_SB(sb)->client_info;
return scoutfs_net_sync_request(sb, client->conn, SCOUTFS_NET_CMD_SET_VOLOPT,
volopt, sizeof(*volopt), NULL, 0);
}
/* The client is asking the server to clear volume options */
int scoutfs_client_clear_volopt(struct super_block *sb, struct scoutfs_volume_options *volopt)
{
struct client_info *client = SCOUTFS_SB(sb)->client_info;
return scoutfs_net_sync_request(sb, client->conn, SCOUTFS_NET_CMD_CLEAR_VOLOPT,
volopt, sizeof(*volopt), NULL, 0);
}
int scoutfs_client_resize_devices(struct super_block *sb, struct scoutfs_net_resize_devices *nrd)
{
struct client_info *client = SCOUTFS_SB(sb)->client_info;
return scoutfs_net_sync_request(sb, client->conn, SCOUTFS_NET_CMD_RESIZE_DEVICES,
nrd, sizeof(*nrd), NULL, 0);
}
int scoutfs_client_statfs(struct super_block *sb, struct scoutfs_net_statfs *nst)
{
struct client_info *client = SCOUTFS_SB(sb)->client_info;
return scoutfs_net_sync_request(sb, client->conn, SCOUTFS_NET_CMD_STATFS,
NULL, 0, nst, sizeof(*nst));
}
/*
* The server is asking that we trigger a commit of the current log
* trees so that they can ensure an item seq discontinuity between
* finalized log btrees and the next set of open log btrees. If we're
* shutting down then we're already going to perform a final commit.
*/
static int sync_log_trees(struct super_block *sb, struct scoutfs_net_connection *conn,
u8 cmd, u64 id, void *arg, u16 arg_len)
{
if (arg_len != 0)
return -EINVAL;
if (!scoutfs_unmounting(sb))
scoutfs_trans_sync(sb, 0);
return scoutfs_net_response(sb, conn, cmd, id, 0, NULL, 0);
}
/* The client is receiving a invalidation request from the server */
static int client_lock(struct super_block *sb,
struct scoutfs_net_connection *conn, u8 cmd, u64 id,
@@ -354,8 +258,8 @@ static int client_greeting(struct super_block *sb,
void *resp, unsigned int resp_len, int error,
void *data)
{
struct scoutfs_sb_info *sbi = SCOUTFS_SB(sb);
struct client_info *client = sbi->client_info;
struct client_info *client = SCOUTFS_SB(sb)->client_info;
struct scoutfs_super_block *super = &SCOUTFS_SB(sb)->super;
struct scoutfs_net_greeting *gr = resp;
bool new_server;
int ret;
@@ -370,16 +274,18 @@ static int client_greeting(struct super_block *sb,
goto out;
}
if (gr->fsid != cpu_to_le64(sbi->fsid)) {
scoutfs_warn(sb, "server greeting response fsid 0x%llx did not match client fsid 0x%llx",
le64_to_cpu(gr->fsid), sbi->fsid);
if (gr->fsid != super->hdr.fsid) {
scoutfs_warn(sb, "server sent fsid 0x%llx, client has 0x%llx",
le64_to_cpu(gr->fsid),
le64_to_cpu(super->hdr.fsid));
ret = -EINVAL;
goto out;
}
if (le64_to_cpu(gr->fmt_vers) != sbi->fmt_vers) {
scoutfs_warn(sb, "server greeting response format version %llu did not match client format version %llu",
le64_to_cpu(gr->fmt_vers), sbi->fmt_vers);
if (gr->format_hash != super->format_hash) {
scoutfs_warn(sb, "server sent format 0x%llx, client has 0x%llx",
le64_to_cpu(gr->format_hash),
le64_to_cpu(super->format_hash));
ret = -EINVAL;
goto out;
}
@@ -388,31 +294,52 @@ static int client_greeting(struct super_block *sb,
scoutfs_net_client_greeting(sb, conn, new_server);
client->server_term = le64_to_cpu(gr->server_term);
client->connect_delay_jiffies = 0;
client->greeting_umb = le64_to_cpu(gr->unmount_barrier);
ret = 0;
out:
return ret;
}
/*
* The client is deciding if it needs to keep trying to reconnect to
* have its farewell request processed. The server removes our mounted
* client item last so that if we don't see it we know the server has
* processed our farewell and we don't need to reconnect, we can unmount
* safely.
* This work is responsible for maintaining a connection from the client
* to the server. It's queued on mount and disconnect and we requeue
* the work if the work fails and we're not shutting down.
*
* This is peeking at btree blocks that the server could be actively
* freeing with cow updates so it can see stale blocks, we just return
* the error and we'll retry eventually as the connection times out.
* In the typical case a mount reads the super blocks and finds the
* address of the currently running server and connects to it.
* Non-voting clients who can't connect will keep trying alternating
* reading the address and getting connect timeouts.
*
* Voting mounts will try to elect a leader if they can't connect to the
* server. When a quorum can't connect and are able to elect a leader
* then a new server is started. The new server will write its address
* in the super and everyone will be able to connect.
*
* There's a tricky bit of coordination required to safely unmount.
* Clients need to tell the server that they won't be coming back with a
* farewell request. Once a client receives its farewell response it
* can exit. But a majority of clients need to stick around to elect a
* server to process all their farewell requests. This is coordinated
* by having the greeting tell the server that a client is a voter. The
* server then holds on to farewell requests from voters until only
* requests from the final quorum remain. These farewell responses are
* only sent after updating an unmount barrier in the super to indicate
* to the final quorum that they can safely exit without having received
* a farewell response over the network.
*/
static int lookup_mounted_client_item(struct super_block *sb, u64 rid)
static void scoutfs_client_connect_worker(struct work_struct *work)
{
struct scoutfs_key key = {
.sk_zone = SCOUTFS_MOUNTED_CLIENT_ZONE,
.skmc_rid = cpu_to_le64(rid),
};
struct scoutfs_super_block *super;
SCOUTFS_BTREE_ITEM_REF(iref);
struct client_info *client = container_of(work, struct client_info,
connect_dwork.work);
struct super_block *sb = client->sb;
struct scoutfs_sb_info *sbi = SCOUTFS_SB(sb);
struct scoutfs_super_block *super = NULL;
struct mount_options *opts = &sbi->opts;
const bool am_voter = opts->server_addr.sin_addr.s_addr != 0;
struct scoutfs_net_greeting greet;
struct sockaddr_in sin;
ktime_t timeout_abs;
u64 elected_term;
int ret;
super = kmalloc(sizeof(struct scoutfs_super_block), GFP_NOFS);
@@ -425,96 +352,57 @@ static int lookup_mounted_client_item(struct super_block *sb, u64 rid)
if (ret)
goto out;
ret = scoutfs_btree_lookup(sb, &super->mounted_clients, &key, &iref);
if (ret == 0) {
scoutfs_btree_put_iref(&iref);
ret = 1;
}
if (ret == -ENOENT)
ret = 0;
kfree(super);
out:
return ret;
}
/*
* If we're not seeing successful connections we want to back off. Each
* connection attempt starts by setting a long connection work delay.
* We only set a shorter delay if we see a greeting response from the
* server. At that point we'll try to immediately reconnect if the
* connection is broken.
*/
static void queue_connect_dwork(struct super_block *sb, struct client_info *client)
{
if (!atomic_read(&client->shutting_down) && !scoutfs_forcing_unmount(sb))
queue_delayed_work(client->workq, &client->connect_dwork,
client->connect_delay_jiffies);
}
/*
* This work is responsible for maintaining a connection from the client
* to the server. It's queued on mount and disconnect and we requeue
* the work if the work fails and we're not shutting down.
*
* We ask quorum for an address to try and connect to. If there isn't
* one, or it fails, we back off a bit before trying again.
*
* There's a tricky bit of coordination required to safely unmount.
* Clients need to tell the server that they won't be coming back with a
* farewell request. Once the server processes a farewell request from
* the client it can forget the client. If the connection is broken
* before the client gets the farewell response it doesn't want to
* reconnect to send it again.. instead the client can read the metadata
* device to check for the lack of an item which indicates that the
* server has processed its farewell.
*/
static void scoutfs_client_connect_worker(struct work_struct *work)
{
struct client_info *client = container_of(work, struct client_info,
connect_dwork.work);
struct super_block *sb = client->sb;
struct scoutfs_sb_info *sbi = SCOUTFS_SB(sb);
struct scoutfs_mount_options opts;
struct scoutfs_net_greeting greet;
struct sockaddr_in sin;
bool am_quorum;
int ret;
scoutfs_options_read(sb, &opts);
am_quorum = opts.quorum_slot_nr >= 0;
/* can unmount once server farewell handling removes our item */
if (client->sending_farewell &&
lookup_mounted_client_item(sb, sbi->rid) == 0) {
/* can safely unmount if we see that server processed our farewell */
if (am_voter && client->sending_farewell &&
(le64_to_cpu(super->unmount_barrier) > client->greeting_umb)) {
client->farewell_error = 0;
complete(&client->farewell_comp);
ret = 0;
goto out;
}
/* always wait a bit until a greeting response sets a lower delay */
client->connect_delay_jiffies = msecs_to_jiffies(CLIENT_CONNECT_DELAY_MS);
/* try to connect to the super's server address */
scoutfs_addr_to_sin(&sin, &super->server_addr);
if (sin.sin_addr.s_addr != 0 && sin.sin_port != 0)
ret = scoutfs_net_connect(sb, client->conn, &sin,
CLIENT_CONNECT_TIMEOUT_MS);
else
ret = -ENOTCONN;
ret = scoutfs_quorum_server_sin(sb, &sin);
if (ret < 0)
goto out;
/* voters try to elect a leader if they couldn't connect */
if (ret < 0) {
/* non-voters will keep retrying */
if (!am_voter)
goto out;
ret = scoutfs_net_connect(sb, client->conn, &sin,
CLIENT_CONNECT_TIMEOUT_MS);
if (ret < 0)
/* make sure local server isn't writing super during votes */
scoutfs_server_stop(sb);
timeout_abs = ktime_add_ms(ktime_get(),
CLIENT_QUORUM_TIMEOUT_MS);
ret = scoutfs_quorum_election(sb, timeout_abs,
le64_to_cpu(super->quorum_server_term),
&elected_term);
/* start the server if we were asked to */
if (elected_term > 0)
ret = scoutfs_server_start(sb, &opts->server_addr,
elected_term);
ret = -ENOTCONN;
goto out;
}
/* send a greeting to verify endpoints of each connection */
greet.fsid = cpu_to_le64(sbi->fsid);
greet.fmt_vers = cpu_to_le64(sbi->fmt_vers);
greet.fsid = super->hdr.fsid;
greet.format_hash = super->format_hash;
greet.server_term = cpu_to_le64(client->server_term);
greet.unmount_barrier = cpu_to_le64(client->greeting_umb);
greet.rid = cpu_to_le64(sbi->rid);
greet.flags = 0;
if (client->sending_farewell)
greet.flags |= cpu_to_le64(SCOUTFS_NET_GREETING_FLAG_FAREWELL);
if (am_quorum)
greet.flags |= cpu_to_le64(SCOUTFS_NET_GREETING_FLAG_QUORUM);
if (am_voter)
greet.flags |= cpu_to_le64(SCOUTFS_NET_GREETING_FLAG_VOTER);
ret = scoutfs_net_submit_request(sb, client->conn,
SCOUTFS_NET_CMD_GREETING,
@@ -523,15 +411,17 @@ static void scoutfs_client_connect_worker(struct work_struct *work)
if (ret)
scoutfs_net_shutdown(sb, client->conn);
out:
if (ret)
queue_connect_dwork(sb, client);
kfree(super);
/* always have a small delay before retrying to avoid storms */
if (ret && !atomic_read(&client->shutting_down))
queue_delayed_work(client->workq, &client->connect_dwork,
msecs_to_jiffies(CLIENT_CONNECT_DELAY_MS));
}
static scoutfs_net_request_t client_req_funcs[] = {
[SCOUTFS_NET_CMD_SYNC_LOG_TREES] = sync_log_trees,
[SCOUTFS_NET_CMD_LOCK] = client_lock,
[SCOUTFS_NET_CMD_LOCK_RECOVER] = client_lock_recover,
[SCOUTFS_NET_CMD_OPEN_INO_MAP] = client_open_ino_map,
};
/*
@@ -544,7 +434,8 @@ static void client_notify_down(struct super_block *sb,
{
struct client_info *client = SCOUTFS_SB(sb)->client_info;
queue_connect_dwork(sb, client);
if (!atomic_read(&client->shutting_down))
queue_delayed_work(client->workq, &client->connect_dwork, 0);
}
int scoutfs_client_setup(struct super_block *sb)
@@ -579,7 +470,7 @@ int scoutfs_client_setup(struct super_block *sb)
goto out;
}
queue_connect_dwork(sb, client);
queue_delayed_work(client->workq, &client->connect_dwork, 0);
ret = 0;
out:
@@ -636,7 +527,7 @@ void scoutfs_client_destroy(struct super_block *sb)
if (client == NULL)
return;
if (client->server_term != 0 && !scoutfs_forcing_unmount(sb)) {
if (client->server_term != 0) {
client->sending_farewell = true;
ret = scoutfs_net_submit_request(sb, client->conn,
SCOUTFS_NET_CMD_FAREWELL,
@@ -644,8 +535,10 @@ void scoutfs_client_destroy(struct super_block *sb)
client_farewell_response,
NULL, NULL);
if (ret == 0) {
wait_for_completion(&client->farewell_comp);
ret = client->farewell_error;
ret = wait_for_completion_interruptible(
&client->farewell_comp);
if (ret == 0)
ret = client->farewell_error;
}
if (ret) {
scoutfs_inc_counter(sb, client_farewell_error);
@@ -669,11 +562,3 @@ void scoutfs_client_destroy(struct super_block *sb)
kfree(client);
sbi->client_info = NULL;
}
void scoutfs_client_net_shutdown(struct super_block *sb)
{
struct client_info *client = SCOUTFS_SB(sb)->client_info;
if (client && client->conn)
scoutfs_net_shutdown(sb, client->conn);
}

View File

@@ -10,6 +10,7 @@ int scoutfs_client_commit_log_trees(struct super_block *sb,
int scoutfs_client_get_roots(struct super_block *sb,
struct scoutfs_net_roots *roots);
u64 *scoutfs_client_bulk_alloc(struct super_block *sb);
int scoutfs_client_advance_seq(struct super_block *sb, u64 *seq);
int scoutfs_client_get_last_seq(struct super_block *sb, u64 *seq);
int scoutfs_client_lock_request(struct super_block *sb,
struct scoutfs_net_lock *nl);
@@ -21,21 +22,7 @@ int scoutfs_client_srch_get_compact(struct super_block *sb,
struct scoutfs_srch_compact *sc);
int scoutfs_client_srch_commit_compact(struct super_block *sb,
struct scoutfs_srch_compact *res);
int scoutfs_client_get_log_merge(struct super_block *sb,
struct scoutfs_log_merge_request *req);
int scoutfs_client_commit_log_merge(struct super_block *sb,
struct scoutfs_log_merge_complete *comp);
int scoutfs_client_send_omap_response(struct super_block *sb, u64 id,
struct scoutfs_open_ino_map *map);
int scoutfs_client_open_ino_map(struct super_block *sb, u64 group_nr,
struct scoutfs_open_ino_map *map);
int scoutfs_client_get_volopt(struct super_block *sb, struct scoutfs_volume_options *volopt);
int scoutfs_client_set_volopt(struct super_block *sb, struct scoutfs_volume_options *volopt);
int scoutfs_client_clear_volopt(struct super_block *sb, struct scoutfs_volume_options *volopt);
int scoutfs_client_resize_devices(struct super_block *sb, struct scoutfs_net_resize_devices *nrd);
int scoutfs_client_statfs(struct super_block *sb, struct scoutfs_net_statfs *nst);
void scoutfs_client_net_shutdown(struct super_block *sb);
int scoutfs_client_setup(struct super_block *sb);
void scoutfs_client_destroy(struct super_block *sb);

315
kmod/src/count.h Normal file
View File

@@ -0,0 +1,315 @@
#ifndef _SCOUTFS_COUNT_H_
#define _SCOUTFS_COUNT_H_
/*
* Our estimate of the space consumed while dirtying items is based on
* the number of items and the size of their values.
*
* The estimate is still a read-only input to entering the transaction.
* We'd like to use it as a clean rhs arg to hold_trans. We define SIC_
* functions which return the count struct. This lets us have a single
* arg and avoid bugs in initializing and passing in struct pointers
* from callers. The internal __count functions are used compose an
* estimate out of the sets of items it manipulates. We program in much
* clearer C instead of in the preprocessor.
*
* Compilers are able to collapse the inlines into constants for the
* constant estimates.
*/
struct scoutfs_item_count {
signed items;
signed vals;
};
/* The caller knows exactly what they're doing. */
static inline const struct scoutfs_item_count SIC_EXACT(signed items,
signed vals)
{
struct scoutfs_item_count cnt = {
.items = items,
.vals = vals,
};
return cnt;
}
/*
* Allocating an inode creates a new set of indexed items.
*/
static inline void __count_alloc_inode(struct scoutfs_item_count *cnt)
{
const int nr_indices = SCOUTFS_INODE_INDEX_NR;
cnt->items += 1 + nr_indices;
cnt->vals += sizeof(struct scoutfs_inode);
}
/*
* Dirtying an inode dirties the inode item and can delete and create
* the full set of indexed items.
*/
static inline void __count_dirty_inode(struct scoutfs_item_count *cnt)
{
const int nr_indices = 2 * SCOUTFS_INODE_INDEX_NR;
cnt->items += 1 + nr_indices;
cnt->vals += sizeof(struct scoutfs_inode);
}
static inline const struct scoutfs_item_count SIC_ALLOC_INODE(void)
{
struct scoutfs_item_count cnt = {0,};
__count_alloc_inode(&cnt);
return cnt;
}
static inline const struct scoutfs_item_count SIC_DIRTY_INODE(void)
{
struct scoutfs_item_count cnt = {0,};
__count_dirty_inode(&cnt);
return cnt;
}
/*
* Directory entries are stored in three items.
*/
static inline void __count_dirents(struct scoutfs_item_count *cnt,
unsigned name_len)
{
cnt->items += 3;
cnt->vals += 3 * offsetof(struct scoutfs_dirent, name[name_len]);
}
static inline void __count_sym_target(struct scoutfs_item_count *cnt,
unsigned size)
{
unsigned nr = DIV_ROUND_UP(size, SCOUTFS_MAX_VAL_SIZE);
cnt->items += nr;
cnt->vals += size;
}
static inline void __count_orphan(struct scoutfs_item_count *cnt)
{
cnt->items += 1;
}
static inline void __count_mknod(struct scoutfs_item_count *cnt,
unsigned name_len)
{
__count_alloc_inode(cnt);
__count_dirents(cnt, name_len);
__count_dirty_inode(cnt);
}
static inline const struct scoutfs_item_count SIC_MKNOD(unsigned name_len)
{
struct scoutfs_item_count cnt = {0,};
__count_mknod(&cnt, name_len);
return cnt;
}
/*
* Dropping the inode deletes all its items. Potentially enormous numbers
* of items (data mapping, xattrs) are deleted in their own transactions.
*/
static inline const struct scoutfs_item_count SIC_DROP_INODE(int mode,
u64 size)
{
struct scoutfs_item_count cnt = {0,};
if (S_ISLNK(mode))
__count_sym_target(&cnt, size);
__count_dirty_inode(&cnt);
__count_orphan(&cnt);
cnt.vals = 0;
return cnt;
}
static inline const struct scoutfs_item_count SIC_LINK(unsigned name_len)
{
struct scoutfs_item_count cnt = {0,};
__count_dirents(&cnt, name_len);
__count_dirty_inode(&cnt);
__count_dirty_inode(&cnt);
return cnt;
}
/*
* Unlink can add orphan items.
*/
static inline const struct scoutfs_item_count SIC_UNLINK(unsigned name_len)
{
struct scoutfs_item_count cnt = {0,};
__count_dirents(&cnt, name_len);
__count_dirty_inode(&cnt);
__count_dirty_inode(&cnt);
__count_orphan(&cnt);
return cnt;
}
static inline const struct scoutfs_item_count SIC_SYMLINK(unsigned name_len,
unsigned size)
{
struct scoutfs_item_count cnt = {0,};
__count_mknod(&cnt, name_len);
__count_sym_target(&cnt, size);
return cnt;
}
/*
* This assumes the worst case of a rename between directories that
* unlinks an existing target. That'll be worse than the common case
* by a few hundred bytes.
*/
static inline const struct scoutfs_item_count SIC_RENAME(unsigned old_len,
unsigned new_len)
{
struct scoutfs_item_count cnt = {0,};
/* dirty dirs and inodes */
__count_dirty_inode(&cnt);
__count_dirty_inode(&cnt);
__count_dirty_inode(&cnt);
__count_dirty_inode(&cnt);
/* unlink old and new, link new */
__count_dirents(&cnt, old_len);
__count_dirents(&cnt, new_len);
__count_dirents(&cnt, new_len);
/* orphan the existing target */
__count_orphan(&cnt);
return cnt;
}
/*
* Creating an xattr results in a dirty set of items with values that
* store the xattr header, name, and value. There's always at least one
* item with the header and name. Any previously existing items are
* deleted which dirties their key but removes their value. The two
* sets of items are indexed by different ids so their items don't
* overlap.
*/
static inline const struct scoutfs_item_count SIC_XATTR_SET(unsigned old_parts,
bool creating,
unsigned name_len,
unsigned size)
{
struct scoutfs_item_count cnt = {0,};
unsigned int new_parts;
__count_dirty_inode(&cnt);
if (old_parts)
cnt.items += old_parts;
if (creating) {
new_parts = SCOUTFS_XATTR_NR_PARTS(name_len, size);
cnt.items += new_parts;
cnt.vals += sizeof(struct scoutfs_xattr) + name_len + size;
}
return cnt;
}
/*
* write_begin can have to allocate all the blocks in the page and can
* have to add a big allocation from the server to do so:
* - merge added free extents from the server
* - remove a free extent per block
* - remove an offline extent for every other block
* - add a file extent per block
*/
static inline const struct scoutfs_item_count SIC_WRITE_BEGIN(void)
{
struct scoutfs_item_count cnt = {0,};
unsigned nr_free = (1 + SCOUTFS_BLOCK_SM_PER_PAGE) * 3;
unsigned nr_file = (DIV_ROUND_UP(SCOUTFS_BLOCK_SM_PER_PAGE, 2) +
SCOUTFS_BLOCK_SM_PER_PAGE) * 3;
__count_dirty_inode(&cnt);
cnt.items += nr_free + nr_file;
cnt.vals += nr_file;
return cnt;
}
/*
* Truncating an extent can:
* - delete existing file extent,
* - create two surrounding file extents,
* - add an offline file extent,
* - delete two existing free extents
* - create a merged free extent
*/
static inline const struct scoutfs_item_count
SIC_TRUNC_EXTENT(struct inode *inode)
{
struct scoutfs_item_count cnt = {0,};
unsigned int nr_file = 1 + 2 + 1;
unsigned int nr_free = (2 + 1) * 2;
if (inode)
__count_dirty_inode(&cnt);
cnt.items += nr_file + nr_free;
cnt.vals += nr_file;
return cnt;
}
/*
* Fallocating an extent can, at most:
* - allocate from the server: delete two free and insert merged
* - free an allocated extent: delete one and create two split
* - remove an unallocated file extent: delete one and create two split
* - add an fallocated flie extent: delete two and inset one merged
*/
static inline const struct scoutfs_item_count SIC_FALLOCATE_ONE(void)
{
struct scoutfs_item_count cnt = {0,};
unsigned int nr_free = ((1 + 2) * 2) * 2;
unsigned int nr_file = (1 + 2) * 2;
__count_dirty_inode(&cnt);
cnt.items += nr_free + nr_file;
cnt.vals += nr_file;
return cnt;
}
/*
* ioc_setattr_more can dirty the inode and add a single offline extent.
*/
static inline const struct scoutfs_item_count SIC_SETATTR_MORE(void)
{
struct scoutfs_item_count cnt = {0,};
__count_dirty_inode(&cnt);
cnt.items++;
return cnt;
}
#endif

View File

@@ -20,21 +20,17 @@
EXPAND_COUNTER(alloc_list_freed_hi) \
EXPAND_COUNTER(alloc_move) \
EXPAND_COUNTER(alloc_moved_extent) \
EXPAND_COUNTER(alloc_stale_list_block) \
EXPAND_COUNTER(block_cache_access_update) \
EXPAND_COUNTER(alloc_stale_cached_list_block) \
EXPAND_COUNTER(block_cache_access) \
EXPAND_COUNTER(block_cache_alloc_failure) \
EXPAND_COUNTER(block_cache_alloc_page_order) \
EXPAND_COUNTER(block_cache_alloc_virt) \
EXPAND_COUNTER(block_cache_end_io_error) \
EXPAND_COUNTER(block_cache_forget) \
EXPAND_COUNTER(block_cache_free) \
EXPAND_COUNTER(block_cache_free_work) \
EXPAND_COUNTER(block_cache_remove_stale) \
EXPAND_COUNTER(block_cache_invalidate) \
EXPAND_COUNTER(block_cache_lru_move) \
EXPAND_COUNTER(block_cache_shrink) \
EXPAND_COUNTER(block_cache_shrink_next) \
EXPAND_COUNTER(block_cache_shrink_recent) \
EXPAND_COUNTER(block_cache_shrink_remove) \
EXPAND_COUNTER(block_cache_shrink_restart) \
EXPAND_COUNTER(btree_compact_values) \
EXPAND_COUNTER(btree_compact_values_enomem) \
EXPAND_COUNTER(btree_delete) \
@@ -44,18 +40,9 @@
EXPAND_COUNTER(btree_insert) \
EXPAND_COUNTER(btree_leaf_item_hash_search) \
EXPAND_COUNTER(btree_lookup) \
EXPAND_COUNTER(btree_merge) \
EXPAND_COUNTER(btree_merge_alloc_low) \
EXPAND_COUNTER(btree_merge_delete) \
EXPAND_COUNTER(btree_merge_delta_combined) \
EXPAND_COUNTER(btree_merge_delta_null) \
EXPAND_COUNTER(btree_merge_dirty_limit) \
EXPAND_COUNTER(btree_merge_drop_old) \
EXPAND_COUNTER(btree_merge_insert) \
EXPAND_COUNTER(btree_merge_update) \
EXPAND_COUNTER(btree_merge_walk) \
EXPAND_COUNTER(btree_next) \
EXPAND_COUNTER(btree_prev) \
EXPAND_COUNTER(btree_read_error) \
EXPAND_COUNTER(btree_split) \
EXPAND_COUNTER(btree_stale_read) \
EXPAND_COUNTER(btree_update) \
@@ -71,10 +58,10 @@
EXPAND_COUNTER(corrupt_symlink_inode_size) \
EXPAND_COUNTER(corrupt_symlink_missing_item) \
EXPAND_COUNTER(corrupt_symlink_not_null_term) \
EXPAND_COUNTER(data_fallocate_enobufs_retry) \
EXPAND_COUNTER(data_write_begin_enobufs_retry) \
EXPAND_COUNTER(dentry_revalidate_error) \
EXPAND_COUNTER(dentry_revalidate_invalid) \
EXPAND_COUNTER(dentry_revalidate_locked) \
EXPAND_COUNTER(dentry_revalidate_orphan) \
EXPAND_COUNTER(dentry_revalidate_rcu) \
EXPAND_COUNTER(dentry_revalidate_root) \
EXPAND_COUNTER(dentry_revalidate_valid) \
@@ -84,15 +71,12 @@
EXPAND_COUNTER(ext_op_remove) \
EXPAND_COUNTER(forest_bloom_fail) \
EXPAND_COUNTER(forest_bloom_pass) \
EXPAND_COUNTER(forest_bloom_stale) \
EXPAND_COUNTER(forest_read_items) \
EXPAND_COUNTER(forest_roots_next_hint) \
EXPAND_COUNTER(forest_set_bloom_bits) \
EXPAND_COUNTER(item_clear_dirty) \
EXPAND_COUNTER(item_create) \
EXPAND_COUNTER(item_delete) \
EXPAND_COUNTER(item_delta) \
EXPAND_COUNTER(item_delta_written) \
EXPAND_COUNTER(item_dirty) \
EXPAND_COUNTER(item_invalidate) \
EXPAND_COUNTER(item_invalidate_page) \
@@ -122,8 +106,12 @@
EXPAND_COUNTER(item_write_dirty) \
EXPAND_COUNTER(lock_alloc) \
EXPAND_COUNTER(lock_free) \
EXPAND_COUNTER(lock_grace_extended) \
EXPAND_COUNTER(lock_grace_set) \
EXPAND_COUNTER(lock_grace_wait) \
EXPAND_COUNTER(lock_grant_request) \
EXPAND_COUNTER(lock_grant_response) \
EXPAND_COUNTER(lock_grant_work) \
EXPAND_COUNTER(lock_invalidate_coverage) \
EXPAND_COUNTER(lock_invalidate_inode) \
EXPAND_COUNTER(lock_invalidate_request) \
@@ -149,52 +137,39 @@
EXPAND_COUNTER(net_recv_invalid_message) \
EXPAND_COUNTER(net_recv_messages) \
EXPAND_COUNTER(net_unknown_request) \
EXPAND_COUNTER(orphan_scan) \
EXPAND_COUNTER(orphan_scan_attempts) \
EXPAND_COUNTER(orphan_scan_cached) \
EXPAND_COUNTER(orphan_scan_error) \
EXPAND_COUNTER(orphan_scan_item) \
EXPAND_COUNTER(orphan_scan_omap_set) \
EXPAND_COUNTER(quorum_candidate_server_stopping) \
EXPAND_COUNTER(quorum_elected) \
EXPAND_COUNTER(quorum_fence_error) \
EXPAND_COUNTER(quorum_fence_leader) \
EXPAND_COUNTER(quorum_cycle) \
EXPAND_COUNTER(quorum_elected_leader) \
EXPAND_COUNTER(quorum_election_timeout) \
EXPAND_COUNTER(quorum_failure) \
EXPAND_COUNTER(quorum_read_block) \
EXPAND_COUNTER(quorum_read_block_error) \
EXPAND_COUNTER(quorum_read_invalid_block) \
EXPAND_COUNTER(quorum_recv_error) \
EXPAND_COUNTER(quorum_recv_heartbeat) \
EXPAND_COUNTER(quorum_recv_invalid) \
EXPAND_COUNTER(quorum_recv_resignation) \
EXPAND_COUNTER(quorum_recv_vote) \
EXPAND_COUNTER(quorum_send_heartbeat) \
EXPAND_COUNTER(quorum_send_resignation) \
EXPAND_COUNTER(quorum_send_request) \
EXPAND_COUNTER(quorum_send_vote) \
EXPAND_COUNTER(quorum_server_shutdown) \
EXPAND_COUNTER(quorum_term_follower) \
EXPAND_COUNTER(quorum_saw_super_leader) \
EXPAND_COUNTER(quorum_timedout) \
EXPAND_COUNTER(quorum_write_block) \
EXPAND_COUNTER(quorum_write_block_error) \
EXPAND_COUNTER(quorum_fenced) \
EXPAND_COUNTER(server_commit_hold) \
EXPAND_COUNTER(server_commit_queue) \
EXPAND_COUNTER(server_commit_worker) \
EXPAND_COUNTER(srch_add_entry) \
EXPAND_COUNTER(srch_compact_dirty_block) \
EXPAND_COUNTER(srch_compact_entry) \
EXPAND_COUNTER(srch_compact_error) \
EXPAND_COUNTER(srch_compact_flush) \
EXPAND_COUNTER(srch_compact_log_page) \
EXPAND_COUNTER(srch_compact_removed_entry) \
EXPAND_COUNTER(srch_inconsistent_ref) \
EXPAND_COUNTER(srch_rotate_log) \
EXPAND_COUNTER(srch_search_log) \
EXPAND_COUNTER(srch_search_log_block) \
EXPAND_COUNTER(srch_search_retry_empty) \
EXPAND_COUNTER(srch_search_sorted) \
EXPAND_COUNTER(srch_search_sorted_block) \
EXPAND_COUNTER(srch_search_stale_eio) \
EXPAND_COUNTER(srch_search_stale_retry) \
EXPAND_COUNTER(srch_search_xattrs) \
EXPAND_COUNTER(srch_read_stale) \
EXPAND_COUNTER(statfs) \
EXPAND_COUNTER(totl_read_copied) \
EXPAND_COUNTER(totl_read_finalized) \
EXPAND_COUNTER(totl_read_fs) \
EXPAND_COUNTER(totl_read_item) \
EXPAND_COUNTER(totl_read_logged) \
EXPAND_COUNTER(trans_commit_data_alloc_low) \
EXPAND_COUNTER(trans_commit_dirty_meta_full) \
EXPAND_COUNTER(trans_commit_fsync) \

View File

@@ -37,6 +37,7 @@
#include "lock.h"
#include "file.h"
#include "msg.h"
#include "count.h"
#include "ext.h"
#include "util.h"
@@ -207,7 +208,6 @@ static s64 truncate_extents(struct super_block *sb, struct inode *inode,
u64 offset;
s64 ret;
u8 flags;
int err;
int i;
flags = offline ? SEF_OFFLINE : 0;
@@ -247,18 +247,6 @@ static s64 truncate_extents(struct super_block *sb, struct inode *inode,
tr.len = min(ext.len - offset, last - iblock + 1);
tr.flags = ext.flags;
trace_scoutfs_data_extent_truncated(sb, ino, &tr);
ret = scoutfs_ext_set(sb, &data_ext_ops, &args,
tr.start, tr.len, 0, flags);
if (ret < 0) {
if (WARN_ON_ONCE(ret == -EINVAL)) {
scoutfs_err(sb, "unexpected truncate inconsistency: ino %llu iblock %llu last %llu, start %llu len %llu",
ino, iblock, last, tr.start, tr.len);
}
break;
}
if (tr.map) {
mutex_lock(&datinf->mutex);
ret = scoutfs_free_data(sb, datinf->alloc,
@@ -266,16 +254,16 @@ static s64 truncate_extents(struct super_block *sb, struct inode *inode,
&datinf->data_freed,
tr.map, tr.len);
mutex_unlock(&datinf->mutex);
if (ret < 0) {
err = scoutfs_ext_set(sb, &data_ext_ops, &args,
tr.start, tr.len, tr.map, tr.flags);
if (err < 0)
scoutfs_err(sb, "truncate err %d restoring extent after error %lld: ino %llu start %llu len %llu",
err, ret, ino, tr.start, tr.len);
if (ret < 0)
break;
}
}
trace_scoutfs_data_extent_truncated(sb, ino, &tr);
ret = scoutfs_ext_set(sb, &data_ext_ops, &args,
tr.start, tr.len, 0, flags);
BUG_ON(ret); /* inconsistent, could prealloc items */
iblock += tr.len;
}
@@ -303,6 +291,7 @@ int scoutfs_data_truncate_items(struct super_block *sb, struct inode *inode,
u64 ino, u64 iblock, u64 last, bool offline,
struct scoutfs_lock *lock)
{
struct scoutfs_item_count cnt = SIC_TRUNC_EXTENT(inode);
struct scoutfs_inode_info *si = NULL;
LIST_HEAD(ind_locks);
s64 ret = 0;
@@ -325,9 +314,10 @@ int scoutfs_data_truncate_items(struct super_block *sb, struct inode *inode,
while (iblock <= last) {
if (inode)
ret = scoutfs_inode_index_lock_hold(inode, &ind_locks, true, false);
ret = scoutfs_inode_index_lock_hold(inode, &ind_locks,
true, cnt);
else
ret = scoutfs_hold_trans(sb, false);
ret = scoutfs_hold_trans(sb, cnt);
if (ret)
break;
@@ -366,27 +356,27 @@ static inline u64 ext_last(struct scoutfs_extent *ext)
/*
* The caller is writing to a logical iblock that doesn't have an
* allocated extent. The caller has searched for an extent containing
* iblock. If it already existed then it must be unallocated and
* offline.
* allocated extent.
*
* We implement two preallocation strategies. Typically we only
* preallocate for simple streaming writes and limit preallocation while
* the file is small. The largest efficient allocation size is
* typically large enough that it would be unreasonable to allocate that
* much for all small files.
* We always allocate an extent starting at the logical iblock. The
* caller has searched for an extent containing iblock. If it already
* existed then it must be unallocated and offline.
*
* Optionally, we can simply preallocate large empty aligned regions.
* This can waste a lot of space for small or sparse files but is
* reasonable when a file population is known to be large and dense but
* known to be written with non-streaming write patterns.
* Preallocation is used if we're strictly contiguously extending
* writes. That is, if the logical block offset equals the number of
* online blocks. We try to preallocate the number of blocks existing
* so that small files don't waste inordinate amounts of space and large
* files will eventually see large extents. This only works for
* contiguous single stream writes or stages of files from the first
* block. It doesn't work for concurrent stages, releasing behind
* staging, sparse files, multi-node writes, etc. fallocate() is always
* a better tool to use.
*/
static int alloc_block(struct super_block *sb, struct inode *inode,
struct scoutfs_extent *ext, u64 iblock,
struct scoutfs_lock *lock)
{
DECLARE_DATA_INFO(sb, datinf);
struct scoutfs_mount_options opts;
const u64 ino = scoutfs_ino(inode);
struct data_ext_args args = {
.ino = ino,
@@ -394,22 +384,17 @@ static int alloc_block(struct super_block *sb, struct inode *inode,
.lock = lock,
};
struct scoutfs_extent found;
struct scoutfs_extent pre = {0,};
bool undo_pre = false;
struct scoutfs_extent pre;
u64 blkno = 0;
u64 online;
u64 offline;
u8 flags;
u64 start;
u64 count;
u64 rem;
int ret;
int err;
trace_scoutfs_data_alloc_block_enter(sb, ino, iblock, ext);
scoutfs_options_read(sb, &opts);
/* can only allocate over existing unallocated offline extent */
if (WARN_ON_ONCE(ext->len &&
!(iblock >= ext->start && iblock <= ext_last(ext) &&
@@ -418,106 +403,66 @@ static int alloc_block(struct super_block *sb, struct inode *inode,
mutex_lock(&datinf->mutex);
/* default to single allocation at the written block */
start = iblock;
count = 1;
/* copy existing flags for preallocated regions */
flags = ext->len ? ext->flags : 0;
scoutfs_inode_get_onoff(inode, &online, &offline);
if (ext->len) {
/*
* Assume that offline writers are going to be writing
* all the offline extents and try to preallocate the
* rest of the unwritten extent.
*/
/* limit preallocation to remaining existing (offline) extent */
count = ext->len - (iblock - ext->start);
} else if (opts.data_prealloc_contig_only) {
/*
* Only preallocate when a quick test of the online
* block counts looks like we're a simple streaming
* write. Try to write until the next extent but limit
* the preallocation size to the number of online
* blocks.
*/
scoutfs_inode_get_onoff(inode, &online, &offline);
if (iblock > 1 && iblock == online) {
ret = scoutfs_ext_next(sb, &data_ext_ops, &args,
iblock, 1, &found);
if (ret < 0 && ret != -ENOENT)
goto out;
if (found.len && found.start > iblock)
count = found.start - iblock;
else
count = opts.data_prealloc_blocks;
count = min(iblock, count);
}
flags = ext->flags;
} else {
/*
* Preallocation of aligned regions only preallocates if
* the aligned region contains no extents at all. This
* could be fooled by offline sparse extents but we
* don't want to iterate over all offline extents in the
* aligned region.
*/
div64_u64_rem(iblock, opts.data_prealloc_blocks, &rem);
start = iblock - rem;
count = opts.data_prealloc_blocks;
ret = scoutfs_ext_next(sb, &data_ext_ops, &args, start, 1, &found);
/* otherwise alloc to next extent */
ret = scoutfs_ext_next(sb, &data_ext_ops, &args,
iblock, 1, &found);
if (ret < 0 && ret != -ENOENT)
goto out;
if (found.len && found.start < start + count)
count = 1;
if (found.len && found.start > iblock)
count = found.start - iblock;
else
count = SCOUTFS_DATA_EXTEND_PREALLOC_LIMIT;
flags = 0;
}
/* overall prealloc limit */
count = min_t(u64, count, opts.data_prealloc_blocks);
count = min_t(u64, count, SCOUTFS_DATA_EXTEND_PREALLOC_LIMIT);
/* only strictly contiguous extending writes will try to preallocate */
if (iblock > 1 && iblock == online)
count = min(iblock, count);
else
count = 1;
ret = scoutfs_alloc_data(sb, datinf->alloc, datinf->wri,
&datinf->dalloc, count, &blkno, &count);
if (ret < 0)
goto out;
/*
* An aligned prealloc attempt that gets a smaller extent can
* fail to cover iblock, make sure that it does. This is a
* pathological case so we don't try to move the window past
* iblock. Just enough to cover it, which we know is safe.
*/
if (start + count <= iblock)
start += (iblock - (start + count) + 1);
ret = scoutfs_ext_set(sb, &data_ext_ops, &args, iblock, 1, blkno, 0);
if (ret < 0)
goto out;
if (count > 1) {
pre.start = start;
pre.len = count;
pre.map = blkno;
pre.start = iblock + 1;
pre.len = count - 1;
pre.map = blkno + 1;
pre.flags = flags | SEF_UNWRITTEN;
ret = scoutfs_ext_set(sb, &data_ext_ops, &args, pre.start,
pre.len, pre.map, pre.flags);
if (ret < 0)
if (ret < 0) {
err = scoutfs_ext_set(sb, &data_ext_ops, &args, iblock,
1, 0, flags);
BUG_ON(err); /* couldn't restore original */
goto out;
undo_pre = true;
}
}
ret = scoutfs_ext_set(sb, &data_ext_ops, &args, iblock, 1, blkno + (iblock - start), 0);
if (ret < 0)
goto out;
/* tell the caller we have a single block, could check next? */
ext->start = iblock;
ext->len = 1;
ext->map = blkno + (iblock - start);
ext->map = blkno;
ext->flags = 0;
ret = 0;
out:
if (ret < 0 && blkno > 0) {
if (undo_pre) {
err = scoutfs_ext_set(sb, &data_ext_ops, &args,
pre.start, pre.len, 0, flags);
BUG_ON(err); /* leaked preallocated extent */
}
err = scoutfs_free_data(sb, datinf->alloc, datinf->wri,
&datinf->data_freed, blkno, count);
BUG_ON(err); /* leaked free blocks */
@@ -631,8 +576,8 @@ static int scoutfs_get_block_read(struct inode *inode, sector_t iblock,
return ret;
}
int scoutfs_get_block_write(struct inode *inode, sector_t iblock, struct buffer_head *bh,
int create)
static int scoutfs_get_block_write(struct inode *inode, sector_t iblock,
struct buffer_head *bh, int create)
{
struct scoutfs_inode_info *si = SCOUTFS_I(inode);
int ret;
@@ -808,12 +753,13 @@ static int scoutfs_write_begin(struct file *file,
goto out;
}
retry:
do {
ret = scoutfs_inode_index_start(sb, &ind_seq) ?:
scoutfs_inode_index_prepare(sb, &wbd->ind_locks, inode,
true) ?:
scoutfs_inode_index_try_lock_hold(sb, &wbd->ind_locks, ind_seq, true);
scoutfs_inode_index_try_lock_hold(sb, &wbd->ind_locks,
ind_seq,
SIC_WRITE_BEGIN());
} while (ret > 0);
if (ret < 0)
goto out;
@@ -822,22 +768,17 @@ retry:
flags |= AOP_FLAG_NOFS;
/* generic write_end updates i_size and calls dirty_inode */
ret = scoutfs_dirty_inode_item(inode, wbd->lock) ?:
block_write_begin(mapping, pos, len, flags, pagep,
scoutfs_get_block_write);
if (ret < 0) {
ret = scoutfs_dirty_inode_item(inode, wbd->lock);
if (ret == 0)
ret = block_write_begin(mapping, pos, len, flags, pagep,
scoutfs_get_block_write);
if (ret)
scoutfs_release_trans(sb);
scoutfs_inode_index_unlock(sb, &wbd->ind_locks);
if (ret == -ENOBUFS) {
/* Retry with a new transaction. */
scoutfs_inc_counter(sb, data_write_begin_enobufs_retry);
goto retry;
}
}
out:
if (ret < 0)
if (ret) {
scoutfs_inode_index_unlock(sb, &wbd->ind_locks);
kfree(wbd);
}
return ret;
}
@@ -875,7 +816,6 @@ static int scoutfs_write_end(struct file *file, struct address_space *mapping,
scoutfs_inode_inc_data_version(inode);
}
inode_inc_iversion(inode);
scoutfs_update_inode_item(inode, wbd->lock, &wbd->ind_locks);
scoutfs_inode_queue_writeback(inode);
}
@@ -1028,6 +968,9 @@ long scoutfs_fallocate(struct file *file, int mode, loff_t offset, loff_t len)
u64 last;
s64 ret;
mutex_lock(&inode->i_mutex);
down_write(&si->extent_sem);
/* XXX support more flags */
if (mode & ~(FALLOC_FL_KEEP_SIZE)) {
ret = -EOPNOTSUPP;
@@ -1045,22 +988,18 @@ long scoutfs_fallocate(struct file *file, int mode, loff_t offset, loff_t len)
goto out;
}
mutex_lock(&inode->i_mutex);
ret = scoutfs_lock_inode(sb, SCOUTFS_LOCK_WRITE,
SCOUTFS_LKF_REFRESH_INODE, inode, &lock);
if (ret)
goto out_mutex;
goto out;
inode_dio_wait(inode);
down_write(&si->extent_sem);
if (!(mode & FALLOC_FL_KEEP_SIZE) &&
(offset + len > i_size_read(inode))) {
ret = inode_newsize_ok(inode, offset + len);
if (ret)
goto out_extent;
goto out;
}
iblock = offset >> SCOUTFS_BLOCK_SM_SHIFT;
@@ -1068,9 +1007,10 @@ long scoutfs_fallocate(struct file *file, int mode, loff_t offset, loff_t len)
while(iblock <= last) {
ret = scoutfs_inode_index_lock_hold(inode, &ind_locks, false, true);
ret = scoutfs_inode_index_lock_hold(inode, &ind_locks, false,
SIC_FALLOCATE_ONE());
if (ret)
goto out_extent;
goto out;
ret = fallocate_extents(sb, inode, iblock, last, lock);
@@ -1078,37 +1018,26 @@ long scoutfs_fallocate(struct file *file, int mode, loff_t offset, loff_t len)
end = (iblock + ret) << SCOUTFS_BLOCK_SM_SHIFT;
if (end > offset + len)
end = offset + len;
if (end > i_size_read(inode)) {
if (end > i_size_read(inode))
i_size_write(inode, end);
inode_inc_iversion(inode);
scoutfs_inode_inc_data_version(inode);
}
}
if (ret >= 0)
scoutfs_update_inode_item(inode, lock, &ind_locks);
scoutfs_release_trans(sb);
scoutfs_inode_index_unlock(sb, &ind_locks);
/* txn couldn't meet the request. Let's try with a new txn */
if (ret == -ENOBUFS) {
scoutfs_inc_counter(sb, data_fallocate_enobufs_retry);
continue;
}
if (ret <= 0)
goto out_extent;
goto out;
iblock += ret;
ret = 0;
}
out_extent:
up_write(&si->extent_sem);
out_mutex:
out:
scoutfs_unlock(sb, lock, SCOUTFS_LOCK_WRITE);
up_write(&si->extent_sem);
mutex_unlock(&inode->i_mutex);
out:
trace_scoutfs_data_fallocate(sb, ino, mode, offset, len, ret);
return ret;
}
@@ -1149,7 +1078,8 @@ int scoutfs_data_init_offline_extent(struct inode *inode, u64 size,
}
/* we're updating meta_seq with offline block count */
ret = scoutfs_inode_index_lock_hold(inode, &ind_locks, false, true);
ret = scoutfs_inode_index_lock_hold(inode, &ind_locks, false,
SIC_SETATTR_MORE());
if (ret < 0)
goto out;
@@ -1192,14 +1122,13 @@ static void truncate_inode_pages_extent(struct inode *inode, u64 start, u64 len)
* explained above the move_blocks ioctl argument structure definition.
*
* The caller has processed the ioctl args and performed the most basic
* argument sanity and inode checks, but we perform more detailed inode
* checks once we have the inode lock and refreshed inodes. Our job is
* to safely lock the two files and move the extents.
* inode checks, but we perform more detailed inode checks once we have
* the inode lock and refreshed inodes. Our job is to safely lock the
* two files and move the extents.
*/
#define MOVE_DATA_EXTENTS_PER_HOLD 16
int scoutfs_data_move_blocks(struct inode *from, u64 from_off,
u64 byte_len, struct inode *to, u64 to_off, bool is_stage,
u64 data_version)
u64 byte_len, struct inode *to, u64 to_off)
{
struct scoutfs_inode_info *from_si = SCOUTFS_I(from);
struct scoutfs_inode_info *to_si = SCOUTFS_I(to);
@@ -1209,7 +1138,6 @@ int scoutfs_data_move_blocks(struct inode *from, u64 from_off,
struct data_ext_args from_args;
struct data_ext_args to_args;
struct scoutfs_extent ext;
struct timespec cur_time;
LIST_HEAD(locks);
bool done = false;
loff_t from_size;
@@ -1245,24 +1173,10 @@ int scoutfs_data_move_blocks(struct inode *from, u64 from_off,
goto out;
}
if (is_stage && (data_version != SCOUTFS_I(to)->data_version)) {
ret = -ESTALE;
goto out;
}
from_iblock = from_off >> SCOUTFS_BLOCK_SM_SHIFT;
count = (byte_len + SCOUTFS_BLOCK_SM_MASK) >> SCOUTFS_BLOCK_SM_SHIFT;
to_iblock = to_off >> SCOUTFS_BLOCK_SM_SHIFT;
/* only move extent blocks inside i_size, careful not to wrap */
from_size = i_size_read(from);
if (from_off >= from_size) {
ret = 0;
goto out;
}
if (from_off + byte_len > from_size)
count = ((from_size - from_off) + SCOUTFS_BLOCK_SM_MASK) >> SCOUTFS_BLOCK_SM_SHIFT;
if (S_ISDIR(from->i_mode) || S_ISDIR(to->i_mode)) {
ret = -EISDIR;
goto out;
@@ -1281,7 +1195,7 @@ int scoutfs_data_move_blocks(struct inode *from, u64 from_off,
/* can't stage once data_version changes */
scoutfs_inode_get_onoff(from, &junk, &from_offline);
scoutfs_inode_get_onoff(to, &junk, &to_offline);
if (from_offline || (to_offline && !is_stage)) {
if (from_offline || to_offline) {
ret = -ENODATA;
goto out;
}
@@ -1310,7 +1224,8 @@ int scoutfs_data_move_blocks(struct inode *from, u64 from_off,
ret = scoutfs_inode_index_start(sb, &seq) ?:
scoutfs_inode_index_prepare(sb, &locks, from, true) ?:
scoutfs_inode_index_prepare(sb, &locks, to, true) ?:
scoutfs_inode_index_try_lock_hold(sb, &locks, seq, false);
scoutfs_inode_index_try_lock_hold(sb, &locks, seq,
SIC_EXACT(1, 1));
if (ret > 0)
continue;
if (ret < 0)
@@ -1325,8 +1240,6 @@ int scoutfs_data_move_blocks(struct inode *from, u64 from_off,
/* arbitrarily limit the number of extents per trans hold */
for (i = 0; i < MOVE_DATA_EXTENTS_PER_HOLD; i++) {
struct scoutfs_extent off_ext;
/* find the next extent to move */
ret = scoutfs_ext_next(sb, &data_ext_ops, &from_args,
from_iblock, 1, &ext);
@@ -1338,8 +1251,9 @@ int scoutfs_data_move_blocks(struct inode *from, u64 from_off,
break;
}
/* done if next extent starts after moving region */
if (ext.start >= from_iblock + count) {
/* only move extents within count and i_size */
if (ext.start >= from_iblock + count ||
ext.start >= i_size_read(from)) {
done = true;
ret = 0;
break;
@@ -1347,36 +1261,17 @@ int scoutfs_data_move_blocks(struct inode *from, u64 from_off,
from_start = max(ext.start, from_iblock);
map = ext.map + (from_start - ext.start);
len = min(from_iblock + count, ext.start + ext.len) - from_start;
len = min3(from_iblock + count,
round_up((u64)i_size_read(from),
SCOUTFS_BLOCK_SM_SIZE),
ext.start + ext.len) - from_start;
to_start = to_iblock + (from_start - from_iblock);
/* we'd get stuck, shouldn't happen */
if (WARN_ON_ONCE(len == 0)) {
ret = -EIO;
goto out;
}
if (is_stage) {
ret = scoutfs_ext_next(sb, &data_ext_ops, &to_args,
to_start, 1, &off_ext);
if (ret)
break;
if (!scoutfs_ext_inside(to_start, len, &off_ext) ||
!(off_ext.flags & SEF_OFFLINE)) {
ret = -EINVAL;
break;
}
ret = scoutfs_ext_set(sb, &data_ext_ops, &to_args,
to_start, len,
map, ext.flags);
} else {
/* insert the new, fails if it overlaps */
ret = scoutfs_ext_insert(sb, &data_ext_ops, &to_args,
to_start, len,
map, ext.flags);
}
/* insert the new, fails if it overlaps */
ret = scoutfs_ext_insert(sb, &data_ext_ops, &to_args,
to_start, len,
map, ext.flags);
if (ret < 0)
break;
@@ -1384,18 +1279,10 @@ int scoutfs_data_move_blocks(struct inode *from, u64 from_off,
ret = scoutfs_ext_set(sb, &data_ext_ops, &from_args,
from_start, len, 0, 0);
if (ret < 0) {
if (is_stage) {
/* re-mark dest range as offline */
WARN_ON_ONCE(!(off_ext.flags & SEF_OFFLINE));
err = scoutfs_ext_set(sb, &data_ext_ops, &to_args,
to_start, len,
0, off_ext.flags);
} else {
/* remove inserted new on err */
err = scoutfs_ext_remove(sb, &data_ext_ops,
&to_args, to_start,
len);
}
/* remove inserted new on err */
err = scoutfs_ext_remove(sb, &data_ext_ops,
&to_args, to_start,
len);
BUG_ON(err); /* XXX inconsistent */
break;
}
@@ -1423,17 +1310,12 @@ int scoutfs_data_move_blocks(struct inode *from, u64 from_off,
up_write(&from_si->extent_sem);
up_write(&to_si->extent_sem);
cur_time = CURRENT_TIME;
if (!is_stage) {
to->i_ctime = to->i_mtime = cur_time;
inode_inc_iversion(to);
scoutfs_inode_inc_data_version(to);
scoutfs_inode_set_data_seq(to);
}
from->i_ctime = from->i_mtime = cur_time;
inode_inc_iversion(from);
from->i_ctime = from->i_mtime =
to->i_ctime = to->i_mtime = CURRENT_TIME;
scoutfs_inode_inc_data_version(from);
scoutfs_inode_inc_data_version(to);
scoutfs_inode_set_data_seq(from);
scoutfs_inode_set_data_seq(to);
scoutfs_update_inode_item(from, from_lock, &locks);
scoutfs_update_inode_item(to, to_lock, &locks);
@@ -1919,17 +1801,13 @@ int scoutfs_data_prepare_commit(struct super_block *sb)
return ret;
}
/*
* Return true if the data allocator is lower than the caller's
* requirement and we haven't been told by the server that we're out of
* free extents.
*/
bool scoutfs_data_alloc_should_refill(struct super_block *sb, u64 blocks)
u64 scoutfs_data_alloc_free_bytes(struct super_block *sb)
{
DECLARE_DATA_INFO(sb, datinf);
return (scoutfs_dalloc_total_len(&datinf->dalloc) < blocks) &&
!(le32_to_cpu(datinf->dalloc.root.flags) & SCOUTFS_ALLOC_FLAG_LOW);
return scoutfs_dalloc_total_len(&datinf->dalloc) <<
SCOUTFS_BLOCK_SM_SHIFT;
}
int scoutfs_data_setup(struct super_block *sb)

View File

@@ -38,14 +38,18 @@ struct scoutfs_data_wait {
.err = 0, \
}
struct scoutfs_traced_extent {
u64 iblock;
u64 count;
u64 blkno;
u8 flags;
};
extern const struct address_space_operations scoutfs_file_aops;
extern const struct file_operations scoutfs_file_fops;
struct scoutfs_alloc;
struct scoutfs_block_writer;
int scoutfs_get_block_write(struct inode *inode, sector_t iblock, struct buffer_head *bh,
int create);
int scoutfs_data_truncate_items(struct super_block *sb, struct inode *inode,
u64 ino, u64 iblock, u64 last, bool offline,
struct scoutfs_lock *lock);
@@ -55,8 +59,7 @@ long scoutfs_fallocate(struct file *file, int mode, loff_t offset, loff_t len);
int scoutfs_data_init_offline_extent(struct inode *inode, u64 size,
struct scoutfs_lock *lock);
int scoutfs_data_move_blocks(struct inode *from, u64 from_off,
u64 byte_len, struct inode *to, u64 to_off, bool to_stage,
u64 data_version);
u64 byte_len, struct inode *to, u64 to_off);
int scoutfs_data_wait_check(struct inode *inode, loff_t pos, loff_t len,
u8 sef, u8 op, struct scoutfs_data_wait *ow,
@@ -82,7 +85,7 @@ void scoutfs_data_init_btrees(struct super_block *sb,
void scoutfs_data_get_btrees(struct super_block *sb,
struct scoutfs_log_trees *lt);
int scoutfs_data_prepare_commit(struct super_block *sb);
bool scoutfs_data_alloc_should_refill(struct super_block *sb, u64 blocks);
u64 scoutfs_data_alloc_free_bytes(struct super_block *sb);
int scoutfs_data_setup(struct super_block *sb);
void scoutfs_data_destroy(struct super_block *sb);

File diff suppressed because it is too large Load Diff

View File

@@ -5,18 +5,16 @@
#include "lock.h"
extern const struct file_operations scoutfs_dir_fops;
extern const struct inode_operations_wrapper scoutfs_dir_iops;
extern const struct inode_operations scoutfs_dir_iops;
extern const struct inode_operations scoutfs_symlink_iops;
extern const struct dentry_operations scoutfs_dentry_ops;
struct scoutfs_link_backref_entry {
struct list_head head;
u64 dir_ino;
u64 dir_pos;
u16 name_len;
struct scoutfs_dirent dent;
/* the full name is allocated and stored in dent.name[] */
/* the full name is allocated and stored in dent.name[0] */
};
int scoutfs_dir_get_backref_path(struct super_block *sb, u64 ino, u64 dir_ino,
@@ -31,4 +29,7 @@ int scoutfs_dir_add_next_linkref(struct super_block *sb, u64 ino,
int scoutfs_symlink_drop(struct super_block *sb, u64 ino,
struct scoutfs_lock *lock, u64 i_size);
int scoutfs_dir_init(void);
void scoutfs_dir_exit(void);
#endif

View File

@@ -81,7 +81,7 @@ static struct dentry *scoutfs_fh_to_dentry(struct super_block *sb,
trace_scoutfs_fh_to_dentry(sb, fh_type, sfid);
if (scoutfs_valid_fileid(fh_type))
inode = scoutfs_iget(sb, le64_to_cpu(sfid->ino), 0, SCOUTFS_IGF_LINKED);
inode = scoutfs_iget(sb, le64_to_cpu(sfid->ino));
return d_obtain_alias(inode);
}
@@ -100,7 +100,7 @@ static struct dentry *scoutfs_fh_to_parent(struct super_block *sb,
if (scoutfs_valid_fileid(fh_type) &&
fh_type == FILEID_SCOUTFS_WITH_PARENT)
inode = scoutfs_iget(sb, le64_to_cpu(sfid->parent_ino), 0, SCOUTFS_IGF_LINKED);
inode = scoutfs_iget(sb, le64_to_cpu(sfid->parent_ino));
return d_obtain_alias(inode);
}
@@ -123,7 +123,7 @@ static struct dentry *scoutfs_get_parent(struct dentry *child)
scoutfs_dir_free_backref_path(sb, &list);
trace_scoutfs_get_parent(sb, inode, ino);
inode = scoutfs_iget(sb, ino, 0, SCOUTFS_IGF_LINKED);
inode = scoutfs_iget(sb, ino);
return d_obtain_alias(inode);
}

View File

@@ -13,7 +13,6 @@
#include <linux/kernel.h>
#include <linux/fs.h>
#include "msg.h"
#include "ext.h"
#include "counters.h"
#include "scoutfs_trace.h"
@@ -39,7 +38,7 @@ static bool ext_overlap(struct scoutfs_extent *ext, u64 start, u64 len)
return !(e_end < start || ext->start > end);
}
bool scoutfs_ext_inside(u64 start, u64 len, struct scoutfs_extent *out)
static bool ext_inside(u64 start, u64 len, struct scoutfs_extent *out)
{
u64 in_end = start + len - 1;
u64 out_end = out->start + out->len - 1;
@@ -192,9 +191,6 @@ int scoutfs_ext_insert(struct super_block *sb, struct scoutfs_ext_ops *ops,
/* inserting extent must not overlap */
if (found.len && ext_overlap(&ins, found.start, found.len)) {
if (ops->insert_overlap_warn)
scoutfs_err(sb, "inserting extent %llu.%llu overlaps existing %llu.%llu",
start, len, found.start, found.len);
ret = -EINVAL;
goto out;
}
@@ -245,9 +241,7 @@ int scoutfs_ext_remove(struct super_block *sb, struct scoutfs_ext_ops *ops,
goto out;
/* removed extent must be entirely within found */
if (!scoutfs_ext_inside(start, len, &found)) {
scoutfs_err(sb, "error removing extent %llu.%llu, isn't inside existing %llu.%llu",
start, len, found.start, found.len);
if (!ext_inside(start, len, &found)) {
ret = -EINVAL;
goto out;
}
@@ -347,7 +341,7 @@ int scoutfs_ext_set(struct super_block *sb, struct scoutfs_ext_ops *ops,
if (ret == 0 && ext_overlap(&found, start, len)) {
/* set extent must be entirely within found */
if (!scoutfs_ext_inside(start, len, &found)) {
if (!ext_inside(start, len, &found)) {
ret = -EINVAL;
goto out;
}

View File

@@ -15,8 +15,6 @@ struct scoutfs_ext_ops {
u64 start, u64 len, u64 map, u8 flags);
int (*remove)(struct super_block *sb, void *arg, u64 start, u64 len,
u64 map, u8 flags);
bool insert_overlap_warn;
};
bool scoutfs_ext_can_merge(struct scoutfs_extent *left,
@@ -33,6 +31,5 @@ int scoutfs_ext_alloc(struct super_block *sb, struct scoutfs_ext_ops *ops,
struct scoutfs_extent *ext);
int scoutfs_ext_set(struct super_block *sb, struct scoutfs_ext_ops *ops,
void *arg, u64 start, u64 len, u64 map, u8 flags);
bool scoutfs_ext_inside(u64 start, u64 len, struct scoutfs_extent *out);
#endif

View File

@@ -1,481 +0,0 @@
/*
* Copyright (C) 2019 Versity Software, Inc. All rights reserved.
*
* This program is free software; you can redistribute it and/or
* modify it under the terms of the GNU General Public
* License v2 as published by the Free Software Foundation.
*
* This program is distributed in the hope that it will be useful,
* but WITHOUT ANY WARRANTY; without even the implied warranty of
* MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU
* General Public License for more details.
*/
#include <linux/kernel.h>
#include <linux/fs.h>
#include <linux/slab.h>
#include <linux/sched.h>
#include <linux/kobject.h>
#include <linux/sysfs.h>
#include <linux/device.h>
#include <linux/timer.h>
#include <asm/barrier.h>
#include "super.h"
#include "msg.h"
#include "sysfs.h"
#include "server.h"
#include "fence.h"
/*
* Fencing ensures that a given mount can no longer write to the
* metadata or data devices. It's necessary to ensure that it's safe to
* give another mount access to a resource that is currently owned by a
* mount that has stopped responding.
*
* Fencing is performed in collaboration between the currently elected
* quorum leader mount and userspace running on its host. The kernel
* creates fencing requests as it notices that mounts have stopped
* participating. The fence requests are published as directories in
* sysfs. Userspace agents watch for directories, take action, and
* write to files in the directory to indicate that the mount has been
* fenced. Once the mount is fenced the server can reclaim the
* resources previously held by the fenced mount.
*
* The fence requests contain metadata identifying the specific instance
* of the mount that needs to be fenced. This lets a fencing agent
* ensure that a specific mount has been fenced without necessarily
* destroying the node that was hosting it. Maybe the node had rebooted
* and the mount is no longer there, maybe the mount can be force
* unmounted, maybe the node can be configured to isolate the mount from
* the devices.
*
* The fencing mechanism is asynchronous and can fail but the server
* cannot make progress until it completes. If a fence request times
* out the server shuts down in the hope that another instance of a
* server might have more luck fencing a non-responsive mount.
*
* Sources of fencing are fundamentally anchored in shared persistent
* state. It is possible, though unlikely, that servers can fence a
* node and then themselves fail, leaving the next server to try and
* fence the mount again.
*/
struct fence_info {
struct kset *kset;
struct kobject fence_dir_kobj;
struct workqueue_struct *wq;
wait_queue_head_t waitq;
spinlock_t lock;
struct list_head list;
};
#define DECLARE_FENCE_INFO(sb, name) \
struct fence_info *name = SCOUTFS_SB(sb)->fence_info
struct pending_fence {
struct super_block *sb;
struct scoutfs_sysfs_attrs ssa;
struct list_head entry;
struct timer_list timer;
ktime_t start_kt;
__be32 ipv4_addr;
bool fenced;
bool error;
int reason;
u64 rid;
};
#define FENCE_FROM_KOBJ(kobj) \
container_of(SCOUTFS_SYSFS_ATTRS(kobj), struct pending_fence, ssa)
#define DECLARE_FENCE_FROM_KOBJ(name, kobj) \
struct pending_fence *name = FENCE_FROM_KOBJ(kobj)
static void destroy_fence(struct pending_fence *fence)
{
struct super_block *sb = fence->sb;
scoutfs_sysfs_destroy_attrs(sb, &fence->ssa);
del_timer_sync(&fence->timer);
kfree(fence);
}
static ssize_t elapsed_secs_show(struct kobject *kobj,
struct kobj_attribute *attr, char *buf)
{
DECLARE_FENCE_FROM_KOBJ(fence, kobj);
ktime_t now = ktime_get();
struct timeval tv = { 0, };
if (ktime_after(now, fence->start_kt))
tv = ktime_to_timeval(ktime_sub(now, fence->start_kt));
return snprintf(buf, PAGE_SIZE, "%llu", (long long)tv.tv_sec);
}
SCOUTFS_ATTR_RO(elapsed_secs);
static ssize_t fenced_show(struct kobject *kobj, struct kobj_attribute *attr,
char *buf)
{
DECLARE_FENCE_FROM_KOBJ(fence, kobj);
return snprintf(buf, PAGE_SIZE, "%u", !!fence->fenced);
}
/*
* any write to the fenced file from userspace indicates that the mount
* has been safely fenced and can no longer write to the shared device.
*/
static ssize_t fenced_store(struct kobject *kobj, struct kobj_attribute *attr,
const char *buf, size_t count)
{
DECLARE_FENCE_FROM_KOBJ(fence, kobj);
DECLARE_FENCE_INFO(fence->sb, fi);
if (!fence->fenced) {
del_timer_sync(&fence->timer);
fence->fenced = true;
wake_up(&fi->waitq);
}
return count;
}
SCOUTFS_ATTR_RW(fenced);
static ssize_t error_show(struct kobject *kobj, struct kobj_attribute *attr, char *buf)
{
DECLARE_FENCE_FROM_KOBJ(fence, kobj);
return snprintf(buf, PAGE_SIZE, "%u", !!fence->error);
}
/*
* Fencing can tell us that they were unable to fence the given mount.
* We can't continue if the mount can't be isolated so we shut down the
* server.
*/
static ssize_t error_store(struct kobject *kobj, struct kobj_attribute *attr, const char *buf,
size_t count)
{
DECLARE_FENCE_FROM_KOBJ(fence, kobj);
struct super_block *sb = fence->sb;
DECLARE_FENCE_INFO(fence->sb, fi);
if (!fence->error) {
fence->error = true;
scoutfs_err(sb, "error indicated by fence action for rid %016llx", fence->rid);
wake_up(&fi->waitq);
}
return count;
}
SCOUTFS_ATTR_RW(error);
static ssize_t ipv4_addr_show(struct kobject *kobj,
struct kobj_attribute *attr, char *buf)
{
DECLARE_FENCE_FROM_KOBJ(fence, kobj);
return snprintf(buf, PAGE_SIZE, "%pI4", &fence->ipv4_addr);
}
SCOUTFS_ATTR_RO(ipv4_addr);
static ssize_t reason_show(struct kobject *kobj, struct kobj_attribute *attr,
char *buf)
{
DECLARE_FENCE_FROM_KOBJ(fence, kobj);
unsigned r = fence->reason;
char *str = "unknown";
static char *reasons[] = {
[SCOUTFS_FENCE_CLIENT_RECOVERY] = "client_recovery",
[SCOUTFS_FENCE_CLIENT_RECONNECT] = "client_reconnect",
[SCOUTFS_FENCE_QUORUM_BLOCK_LEADER] = "quorum_block_leader",
};
if (r < ARRAY_SIZE(reasons) && reasons[r])
str = reasons[r];
return snprintf(buf, PAGE_SIZE, "%s", str);
}
SCOUTFS_ATTR_RO(reason);
static ssize_t rid_show(struct kobject *kobj, struct kobj_attribute *attr,
char *buf)
{
DECLARE_FENCE_FROM_KOBJ(fence, kobj);
return snprintf(buf, PAGE_SIZE, "%016llx", fence->rid);
}
SCOUTFS_ATTR_RO(rid);
static struct attribute *fence_attrs[] = {
SCOUTFS_ATTR_PTR(elapsed_secs),
SCOUTFS_ATTR_PTR(fenced),
SCOUTFS_ATTR_PTR(error),
SCOUTFS_ATTR_PTR(ipv4_addr),
SCOUTFS_ATTR_PTR(reason),
SCOUTFS_ATTR_PTR(rid),
NULL,
};
#define FENCE_TIMEOUT_MS (MSEC_PER_SEC * 30)
static void fence_timeout(struct timer_list *timer)
{
struct pending_fence *fence = from_timer(fence, timer, timer);
struct super_block *sb = fence->sb;
DECLARE_FENCE_INFO(sb, fi);
fence->error = true;
scoutfs_err(sb, "fence request for rid %016llx was not serviced in %lums, raising error",
fence->rid, FENCE_TIMEOUT_MS);
wake_up(&fi->waitq);
}
int scoutfs_fence_start(struct super_block *sb, u64 rid, __be32 ipv4_addr, int reason)
{
DECLARE_FENCE_INFO(sb, fi);
struct pending_fence *fence;
int ret;
fence = kzalloc(sizeof(struct pending_fence), GFP_NOFS);
if (!fence) {
ret = -ENOMEM;
goto out;
}
fence->sb = sb;
scoutfs_sysfs_init_attrs(sb, &fence->ssa);
fence->start_kt = ktime_get();
fence->ipv4_addr = ipv4_addr;
fence->fenced = false;
fence->error = false;
fence->reason = reason;
fence->rid = rid;
ret = scoutfs_sysfs_create_attrs_parent(sb, &fi->kset->kobj,
&fence->ssa, fence_attrs,
"%016llx", rid);
if (ret < 0) {
kfree(fence);
goto out;
}
timer_setup(&fence->timer, fence_timeout, 0);
fence->timer.expires = jiffies + msecs_to_jiffies(FENCE_TIMEOUT_MS);
add_timer(&fence->timer);
spin_lock(&fi->lock);
list_add_tail(&fence->entry, &fi->list);
spin_unlock(&fi->lock);
out:
return ret;
}
/*
* Give the caller the rid of the next fence request which has been
* fenced. This doesn't have a position from which to return the next
* because the caller either frees the fence request it's given or shuts
* down.
*/
int scoutfs_fence_next(struct super_block *sb, u64 *rid, int *reason, bool *error)
{
DECLARE_FENCE_INFO(sb, fi);
struct pending_fence *fence;
int ret = -ENOENT;
spin_lock(&fi->lock);
list_for_each_entry(fence, &fi->list, entry) {
if (fence->fenced || fence->error) {
*rid = fence->rid;
*reason = fence->reason;
*error = fence->error;
ret = 0;
break;
}
}
spin_unlock(&fi->lock);
return ret;
}
int scoutfs_fence_reason_pending(struct super_block *sb, int reason)
{
DECLARE_FENCE_INFO(sb, fi);
struct pending_fence *fence;
bool pending = false;
spin_lock(&fi->lock);
list_for_each_entry(fence, &fi->list, entry) {
if (fence->reason == reason) {
pending = true;
break;
}
}
spin_unlock(&fi->lock);
return pending;
}
int scoutfs_fence_free(struct super_block *sb, u64 rid)
{
DECLARE_FENCE_INFO(sb, fi);
struct pending_fence *fence;
int ret = -ENOENT;
spin_lock(&fi->lock);
list_for_each_entry(fence, &fi->list, entry) {
if (fence->rid == rid) {
list_del_init(&fence->entry);
ret = 0;
break;
}
}
spin_unlock(&fi->lock);
if (ret == 0) {
destroy_fence(fence);
wake_up(&fi->waitq);
}
return ret;
}
static bool all_fenced(struct fence_info *fi, bool *error)
{
struct pending_fence *fence;
bool all = true;
*error = false;
spin_lock(&fi->lock);
list_for_each_entry(fence, &fi->list, entry) {
if (fence->error) {
*error = true;
all = true;
break;
}
if (!fence->fenced) {
all = false;
break;
}
}
spin_unlock(&fi->lock);
return all;
}
/*
* The caller waits for all the current requests to be fenced, but not
* necessarily reclaimed.
*/
int scoutfs_fence_wait_fenced(struct super_block *sb, long timeout_jiffies)
{
DECLARE_FENCE_INFO(sb, fi);
bool error;
long ret;
ret = wait_event_timeout(fi->waitq, all_fenced(fi, &error), timeout_jiffies);
if (ret == 0)
ret = -ETIMEDOUT;
else if (ret > 0)
ret = 0;
else if (error)
ret = -EIO;
return ret;
}
/*
* This must be called early during startup so that it is guaranteed that
* no other subsystems will try and call fence_start while we're waiting
* for testing fence requests to complete.
*/
int scoutfs_fence_setup(struct super_block *sb)
{
struct scoutfs_sb_info *sbi = SCOUTFS_SB(sb);
struct scoutfs_mount_options opts;
struct fence_info *fi;
int ret;
/* can only fence if we can be elected by quorum */
scoutfs_options_read(sb, &opts);
if (opts.quorum_slot_nr == -1) {
ret = 0;
goto out;
}
fi = kzalloc(sizeof(struct fence_info), GFP_KERNEL);
if (!fi) {
ret = -ENOMEM;
goto out;
}
init_waitqueue_head(&fi->waitq);
spin_lock_init(&fi->lock);
INIT_LIST_HEAD(&fi->list);
sbi->fence_info = fi;
fi->kset = kset_create_and_add("fence", NULL, scoutfs_sysfs_sb_dir(sb));
if (!fi->kset) {
ret = -ENOMEM;
goto out;
}
fi->wq = alloc_workqueue("scoutfs_fence",
WQ_UNBOUND | WQ_NON_REENTRANT, 0);
if (!fi->wq) {
ret = -ENOMEM;
goto out;
}
ret = 0;
out:
if (ret)
scoutfs_fence_destroy(sb);
return ret;
}
/*
* Tear down all pending fence requests because the server is shutting down.
*/
void scoutfs_fence_stop(struct super_block *sb)
{
DECLARE_FENCE_INFO(sb, fi);
struct pending_fence *fence;
do {
spin_lock(&fi->lock);
fence = list_first_entry_or_null(&fi->list, struct pending_fence, entry);
if (fence)
list_del_init(&fence->entry);
spin_unlock(&fi->lock);
if (fence) {
destroy_fence(fence);
wake_up(&fi->waitq);
}
} while (fence);
}
void scoutfs_fence_destroy(struct super_block *sb)
{
struct scoutfs_sb_info *sbi = SCOUTFS_SB(sb);
struct fence_info *fi = SCOUTFS_SB(sb)->fence_info;
struct pending_fence *fence;
struct pending_fence *tmp;
if (fi) {
if (fi->wq)
destroy_workqueue(fi->wq);
list_for_each_entry_safe(fence, tmp, &fi->list, entry)
destroy_fence(fence);
if (fi->kset)
kset_unregister(fi->kset);
kfree(fi);
sbi->fence_info = NULL;
}
}

View File

@@ -1,20 +0,0 @@
#ifndef _SCOUTFS_FENCE_H_
#define _SCOUTFS_FENCE_H_
enum {
SCOUTFS_FENCE_CLIENT_RECOVERY,
SCOUTFS_FENCE_CLIENT_RECONNECT,
SCOUTFS_FENCE_QUORUM_BLOCK_LEADER,
};
int scoutfs_fence_start(struct super_block *sb, u64 rid, __be32 ipv4_addr, int reason);
int scoutfs_fence_next(struct super_block *sb, u64 *rid, int *reason, bool *error);
int scoutfs_fence_reason_pending(struct super_block *sb, int reason);
int scoutfs_fence_free(struct super_block *sb, u64 rid);
int scoutfs_fence_wait_fenced(struct super_block *sb, long timeout_jiffies);
int scoutfs_fence_setup(struct super_block *sb);
void scoutfs_fence_stop(struct super_block *sb);
void scoutfs_fence_destroy(struct super_block *sb);
#endif

View File

@@ -27,14 +27,8 @@
#include "file.h"
#include "inode.h"
#include "per_task.h"
#include "omap.h"
/*
* Start a high level file read. We check for offline extents in the
* read region here so that we only check the extents once. We use the
* dio count to prevent releasing while we're reading after we've
* checked the extents.
*/
/* TODO: Direct I/O, AIO */
ssize_t scoutfs_file_aio_read(struct kiocb *iocb, const struct iovec *iov,
unsigned long nr_segs, loff_t pos)
{
@@ -48,32 +42,30 @@ ssize_t scoutfs_file_aio_read(struct kiocb *iocb, const struct iovec *iov,
int ret;
retry:
/* protect checked extents from release */
mutex_lock(&inode->i_mutex);
atomic_inc(&inode->i_dio_count);
mutex_unlock(&inode->i_mutex);
ret = scoutfs_lock_inode(sb, SCOUTFS_LOCK_READ,
SCOUTFS_LKF_REFRESH_INODE, inode, &inode_lock);
if (ret)
goto out;
if (scoutfs_per_task_add_excl(&si->pt_data_lock, &pt_ent, inode_lock)) {
/* protect checked extents from stage/release */
mutex_lock(&inode->i_mutex);
atomic_inc(&inode->i_dio_count);
mutex_unlock(&inode->i_mutex);
ret = scoutfs_data_wait_check_iov(inode, iov, nr_segs, pos,
SEF_OFFLINE,
SCOUTFS_IOC_DWO_READ,
&dw, inode_lock);
if (ret != 0)
goto out;
} else {
WARN_ON_ONCE(true);
}
ret = generic_file_aio_read(iocb, iov, nr_segs, pos);
out:
inode_dio_done(inode);
scoutfs_per_task_del(&si->pt_data_lock, &pt_ent);
if (scoutfs_per_task_del(&si->pt_data_lock, &pt_ent))
inode_dio_done(inode);
scoutfs_unlock(sb, inode_lock, SCOUTFS_LOCK_READ);
if (scoutfs_data_wait_found(&dw)) {

View File

@@ -26,7 +26,6 @@
#include "hash.h"
#include "srch.h"
#include "counters.h"
#include "xattr.h"
#include "scoutfs_trace.h"
/*
@@ -38,9 +37,9 @@
*
* The log btrees are modified by multiple transactions over time so
* there is no consistent ordering relationship between the items in
* different btrees. Each item in a log btree stores a seq for the
* item. Readers check log btrees for the most recent seq that it
* should use.
* different btrees. Each item in a log btree stores a version number
* for the item. Readers check log btrees for the most recent version
* that it should use.
*
* The item cache reads items in bulk from stable btrees, and writes a
* transaction's worth of dirty items into the item log btree.
@@ -53,8 +52,6 @@
*/
struct forest_info {
struct super_block *sb;
struct mutex mutex;
struct scoutfs_alloc *alloc;
struct scoutfs_block_writer *wri;
@@ -63,21 +60,21 @@ struct forest_info {
struct mutex srch_mutex;
struct scoutfs_srch_file srch_file;
struct scoutfs_block *srch_bl;
struct workqueue_struct *workq;
struct delayed_work log_merge_dwork;
atomic64_t inode_count_delta;
};
#define DECLARE_FOREST_INFO(sb, name) \
struct forest_info *name = SCOUTFS_SB(sb)->forest_info
struct forest_refs {
struct scoutfs_block_ref fs_ref;
struct scoutfs_block_ref logs_ref;
struct scoutfs_btree_ref fs_ref;
struct scoutfs_btree_ref logs_ref;
};
/* initialize some refs that initially aren't equal */
#define DECLARE_STALE_TRACKING_SUPER_REFS(a, b) \
struct forest_refs a = {{cpu_to_le64(0),}}; \
struct forest_refs b = {{cpu_to_le64(1),}}
struct forest_bloom_nrs {
unsigned int nrs[SCOUTFS_FOREST_BLOOM_NRS];
};
@@ -99,16 +96,20 @@ static void calc_bloom_nrs(struct forest_bloom_nrs *bloom,
}
}
static struct scoutfs_block *read_bloom_ref(struct super_block *sb, struct scoutfs_block_ref *ref)
static struct scoutfs_block *read_bloom_ref(struct super_block *sb,
struct scoutfs_btree_ref *ref)
{
struct scoutfs_block *bl;
int ret;
ret = scoutfs_block_read_ref(sb, ref, SCOUTFS_BLOCK_MAGIC_BLOOM, &bl);
if (ret < 0) {
if (ret == -ESTALE)
scoutfs_inc_counter(sb, forest_bloom_stale);
bl = ERR_PTR(ret);
bl = scoutfs_block_read(sb, le64_to_cpu(ref->blkno));
if (IS_ERR(bl))
return bl;
if (!scoutfs_block_consistent_ref(sb, bl, ref->seq, ref->blkno,
SCOUTFS_BLOCK_MAGIC_BLOOM)) {
scoutfs_block_invalidate(sb, bl);
scoutfs_block_put(sb, bl);
return ERR_PTR(-ESTALE);
}
return bl;
@@ -131,11 +132,11 @@ static struct scoutfs_block *read_bloom_ref(struct super_block *sb, struct scout
int scoutfs_forest_next_hint(struct super_block *sb, struct scoutfs_key *key,
struct scoutfs_key *next)
{
DECLARE_STALE_TRACKING_SUPER_REFS(prev_refs, refs);
struct scoutfs_net_roots roots;
struct scoutfs_btree_root item_root;
struct scoutfs_log_trees *lt;
SCOUTFS_BTREE_ITEM_REF(iref);
DECLARE_SAVED_REFS(saved);
struct scoutfs_key found;
struct scoutfs_key ltk;
bool checked_fs;
@@ -150,6 +151,8 @@ retry:
goto out;
trace_scoutfs_forest_using_roots(sb, &roots.fs_root, &roots.logs_root);
refs.fs_ref = roots.fs_root.ref;
refs.logs_ref = roots.logs_root.ref;
scoutfs_key_init_log_trees(&ltk, 0, 0);
checked_fs = false;
@@ -205,25 +208,37 @@ retry:
}
}
ret = scoutfs_block_check_stale(sb, ret, &saved, &roots.fs_root.ref, &roots.logs_root.ref);
if (ret == -ESTALE)
if (ret == -ESTALE) {
if (memcmp(&prev_refs, &refs, sizeof(refs)) == 0)
return -EIO;
prev_refs = refs;
goto retry;
}
out:
return ret;
}
struct forest_read_items_data {
int fic;
bool is_fs;
scoutfs_forest_item_cb cb;
void *cb_arg;
};
static int forest_read_items(struct super_block *sb, struct scoutfs_key *key, u64 seq, u8 flags,
static int forest_read_items(struct super_block *sb, struct scoutfs_key *key,
void *val, int val_len, void *arg)
{
struct forest_read_items_data *rid = arg;
struct scoutfs_log_item_value _liv = {0,};
struct scoutfs_log_item_value *liv = &_liv;
return rid->cb(sb, key, seq, flags, val, val_len, rid->fic, rid->cb_arg);
if (!rid->is_fs) {
liv = val;
val += sizeof(struct scoutfs_log_item_value);
val_len -= sizeof(struct scoutfs_log_item_value);
}
return rid->cb(sb, key, liv, val, val_len, rid->cb_arg);
}
/*
@@ -235,16 +250,19 @@ static int forest_read_items(struct super_block *sb, struct scoutfs_key *key, u6
* that covers all the blocks. Any keys outside of this range can't be
* trusted because we didn't visit all the trees to check their items.
*
* We return -ESTALE if we hit stale blocks to give the caller a chance
* to reset their state and retry with a newer version of the btrees.
* If we hit stale blocks and retry we can call the callback for
* duplicate items. This is harmless because the items are stable while
* the caller holds their cluster lock and the caller has to filter out
* item versions anyway.
*/
int scoutfs_forest_read_items(struct super_block *sb,
struct scoutfs_lock *lock,
struct scoutfs_key *key,
struct scoutfs_key *bloom_key,
struct scoutfs_key *start,
struct scoutfs_key *end,
scoutfs_forest_item_cb cb, void *arg)
{
DECLARE_STALE_TRACKING_SUPER_REFS(prev_refs, refs);
struct forest_read_items_data rid = {
.cb = cb,
.cb_arg = arg,
@@ -256,30 +274,32 @@ int scoutfs_forest_read_items(struct super_block *sb,
SCOUTFS_BTREE_ITEM_REF(iref);
struct scoutfs_block *bl;
struct scoutfs_key ltk;
struct scoutfs_key orig_start = *start;
struct scoutfs_key orig_end = *end;
int ret;
int i;
scoutfs_inc_counter(sb, forest_read_items);
calc_bloom_nrs(&bloom, bloom_key);
calc_bloom_nrs(&bloom, &lock->start);
roots = lock->roots;
retry:
ret = scoutfs_client_get_roots(sb, &roots);
if (ret)
goto out;
trace_scoutfs_forest_using_roots(sb, &roots.fs_root, &roots.logs_root);
refs.fs_ref = roots.fs_root.ref;
refs.logs_ref = roots.logs_root.ref;
*start = orig_start;
*end = orig_end;
*start = lock->start;
*end = lock->end;
/* start with fs root items */
rid.fic |= FIC_FS_ROOT;
rid.is_fs = true;
ret = scoutfs_btree_read_items(sb, &roots.fs_root, key, start, end,
forest_read_items, &rid);
if (ret < 0)
goto out;
rid.fic &= ~FIC_FS_ROOT;
rid.is_fs = false;
scoutfs_key_init_log_trees(&ltk, 0, 0);
for (;; scoutfs_key_inc(&ltk)) {
@@ -324,40 +344,30 @@ int scoutfs_forest_read_items(struct super_block *sb,
scoutfs_inc_counter(sb, forest_bloom_pass);
if ((le64_to_cpu(lt.flags) & SCOUTFS_LOG_TREES_FINALIZED))
rid.fic |= FIC_FINALIZED;
ret = scoutfs_btree_read_items(sb, &lt.item_root, key, start,
end, forest_read_items, &rid);
if (ret < 0)
goto out;
rid.fic &= ~FIC_FINALIZED;
}
ret = 0;
out:
if (ret == -ESTALE) {
if (memcmp(&prev_refs, &refs, sizeof(refs)) == 0) {
ret = -EIO;
goto out;
}
prev_refs = refs;
ret = scoutfs_client_get_roots(sb, &roots);
if (ret)
goto out;
goto retry;
}
return ret;
}
/*
* If the items are deltas then combine the src with the destination
* value and store the result in the destination.
*
* Returns:
* -errno: fatal error, no change
* 0: not delta items, no change
* +ve: SCOUTFS_DELTA_ values indicating when dst and/or src can be dropped
*/
int scoutfs_forest_combine_deltas(struct scoutfs_key *key, void *dst, int dst_len,
void *src, int src_len)
{
if (key->sk_zone == SCOUTFS_XATTR_TOTL_ZONE)
return scoutfs_xattr_combine_totl(dst, dst_len, src, src_len);
return 0;
}
/*
* Make sure that the bloom bits for the lock's start key are all set in
* the current log's bloom block. We record the nr of our log tree in
@@ -371,14 +381,18 @@ int scoutfs_forest_combine_deltas(struct scoutfs_key *key, void *dst, int dst_le
int scoutfs_forest_set_bloom_bits(struct super_block *sb,
struct scoutfs_lock *lock)
{
struct scoutfs_super_block *super = &SCOUTFS_SB(sb)->super;
DECLARE_FOREST_INFO(sb, finf);
struct scoutfs_block *new_bl = NULL;
struct scoutfs_block *bl = NULL;
struct scoutfs_bloom_block *bb;
struct scoutfs_block_ref *ref;
struct scoutfs_btree_ref *ref;
struct forest_bloom_nrs bloom;
int nr_set = 0;
u64 blkno;
u64 nr;
int ret;
int err;
int i;
nr = le64_to_cpu(finf->our_log.nr);
@@ -396,11 +410,53 @@ int scoutfs_forest_set_bloom_bits(struct super_block *sb,
ref = &finf->our_log.bloom_ref;
ret = scoutfs_block_dirty_ref(sb, finf->alloc, finf->wri, ref, SCOUTFS_BLOCK_MAGIC_BLOOM,
&bl, 0, NULL);
if (ret < 0)
goto unlock;
bb = bl->data;
if (ref->blkno) {
bl = read_bloom_ref(sb, ref);
if (IS_ERR(bl)) {
ret = PTR_ERR(bl);
goto unlock;
}
bb = bl->data;
}
if (!ref->blkno || !scoutfs_block_writer_is_dirty(sb, bl)) {
ret = scoutfs_alloc_meta(sb, finf->alloc, finf->wri, &blkno);
if (ret < 0)
goto unlock;
new_bl = scoutfs_block_create(sb, blkno);
if (IS_ERR(new_bl)) {
err = scoutfs_free_meta(sb, finf->alloc, finf->wri,
blkno);
BUG_ON(err); /* could have dirtied */
ret = PTR_ERR(new_bl);
goto unlock;
}
if (bl) {
err = scoutfs_free_meta(sb, finf->alloc, finf->wri,
le64_to_cpu(ref->blkno));
BUG_ON(err); /* could have dirtied */
memcpy(new_bl->data, bl->data, SCOUTFS_BLOCK_LG_SIZE);
} else {
memset(new_bl->data, 0, SCOUTFS_BLOCK_LG_SIZE);
}
scoutfs_block_writer_mark_dirty(sb, finf->wri, new_bl);
scoutfs_block_put(sb, bl);
bl = new_bl;
bb = bl->data;
new_bl = NULL;
bb->hdr.magic = cpu_to_le32(SCOUTFS_BLOCK_MAGIC_BLOOM);
bb->hdr.fsid = super->hdr.fsid;
bb->hdr.blkno = cpu_to_le64(blkno);
prandom_bytes(&bb->hdr.seq, sizeof(bb->hdr.seq));
ref->blkno = bb->hdr.blkno;
ref->seq = bb->hdr.seq;
}
for (i = 0; i < ARRAY_SIZE(bloom.nrs); i++) {
if (!test_and_set_bit_le(bloom.nrs[i], bb->bits)) {
@@ -427,29 +483,29 @@ out:
/*
* The caller is commiting items in the transaction and has found the
* greatest item seq amongst them. We store it in the log_trees root
* greatest item version amongst them. We store it in the log_trees root
* to send to the server.
*/
void scoutfs_forest_set_max_seq(struct super_block *sb, u64 max_seq)
void scoutfs_forest_set_max_vers(struct super_block *sb, u64 max_vers)
{
DECLARE_FOREST_INFO(sb, finf);
finf->our_log.max_item_seq = cpu_to_le64(max_seq);
finf->our_log.max_item_vers = cpu_to_le64(max_vers);
}
/*
* The server is calling during setup to find the greatest item seq
* The server is calling during setup to find the greatest item version
* amongst all the log tree roots. They have the authoritative current
* super.
*
* Item seqs are only used to compare items in log trees, not in the
* main fs tree. All we have to do is find the greatest seq amongst the
* log_trees so that the core seq will have a greater seq than all the
* items in the log_trees.
* Item versions are only used to compare items in log trees, not in the
* main fs tree. All we have to do is find the greatest version amongst
* the log_trees so that new locks will have a write_version greater
* than all the items in the log_trees.
*/
int scoutfs_forest_get_max_seq(struct super_block *sb,
struct scoutfs_super_block *super,
u64 *seq)
int scoutfs_forest_get_max_vers(struct super_block *sb,
struct scoutfs_super_block *super,
u64 *vers)
{
struct scoutfs_log_trees *lt;
SCOUTFS_BTREE_ITEM_REF(iref);
@@ -457,7 +513,7 @@ int scoutfs_forest_get_max_seq(struct super_block *sb,
int ret;
scoutfs_key_init_log_trees(&ltk, 0, 0);
*seq = 0;
*vers = 0;
for (;; scoutfs_key_inc(&ltk)) {
ret = scoutfs_btree_next(sb, &super->logs_root, &ltk, &iref);
@@ -465,7 +521,8 @@ int scoutfs_forest_get_max_seq(struct super_block *sb,
if (iref.val_len == sizeof(struct scoutfs_log_trees)) {
ltk = *iref.key;
lt = iref.val;
*seq = max(*seq, le64_to_cpu(lt->max_item_seq));
*vers = max(*vers,
le64_to_cpu(lt->max_item_vers));
} else {
ret = -EIO;
}
@@ -514,59 +571,6 @@ int scoutfs_forest_srch_add(struct super_block *sb, u64 hash, u64 ino, u64 id)
return ret;
}
void scoutfs_forest_inc_inode_count(struct super_block *sb)
{
DECLARE_FOREST_INFO(sb, finf);
atomic64_inc(&finf->inode_count_delta);
}
void scoutfs_forest_dec_inode_count(struct super_block *sb)
{
DECLARE_FOREST_INFO(sb, finf);
atomic64_dec(&finf->inode_count_delta);
}
/*
* Return the total inode count from the super block and all the
* log_btrees it references. ESTALE from read blocks is returned to the
* caller who is expected to retry or return hard errors.
*/
int scoutfs_forest_inode_count(struct super_block *sb, struct scoutfs_super_block *super,
u64 *inode_count)
{
struct scoutfs_log_trees *lt;
SCOUTFS_BTREE_ITEM_REF(iref);
struct scoutfs_key key;
int ret;
*inode_count = le64_to_cpu(super->inode_count);
scoutfs_key_init_log_trees(&key, 0, 0);
for (;;) {
ret = scoutfs_btree_next(sb, &super->logs_root, &key, &iref);
if (ret == 0) {
if (iref.val_len == sizeof(*lt)) {
key = *iref.key;
scoutfs_key_inc(&key);
lt = iref.val;
*inode_count += le64_to_cpu(lt->inode_count_delta);
} else {
ret = -EIO;
}
scoutfs_btree_put_iref(&iref);
}
if (ret < 0) {
if (ret == -ENOENT)
ret = 0;
break;
}
}
return ret;
}
/*
* This is called from transactions as a new transaction opens and is
* serialized with all writers.
@@ -587,7 +591,7 @@ void scoutfs_forest_init_btrees(struct super_block *sb,
memset(&finf->our_log, 0, sizeof(finf->our_log));
finf->our_log.item_root = lt->item_root;
finf->our_log.bloom_ref = lt->bloom_ref;
finf->our_log.max_item_seq = lt->max_item_seq;
finf->our_log.max_item_vers = lt->max_item_vers;
finf->our_log.rid = lt->rid;
finf->our_log.nr = lt->nr;
finf->srch_file = lt->srch_file;
@@ -595,8 +599,6 @@ void scoutfs_forest_init_btrees(struct super_block *sb,
WARN_ON_ONCE(finf->srch_bl); /* commiting should have put the block */
finf->srch_bl = NULL;
atomic64_set(&finf->inode_count_delta, le64_to_cpu(lt->inode_count_delta));
trace_scoutfs_forest_init_our_log(sb, le64_to_cpu(lt->rid),
le64_to_cpu(lt->nr),
le64_to_cpu(lt->item_root.ref.blkno),
@@ -619,137 +621,15 @@ void scoutfs_forest_get_btrees(struct super_block *sb,
lt->item_root = finf->our_log.item_root;
lt->bloom_ref = finf->our_log.bloom_ref;
lt->srch_file = finf->srch_file;
lt->max_item_seq = finf->our_log.max_item_seq;
lt->max_item_vers = finf->our_log.max_item_vers;
scoutfs_block_put(sb, finf->srch_bl);
finf->srch_bl = NULL;
lt->inode_count_delta = cpu_to_le64(atomic64_read(&finf->inode_count_delta));
trace_scoutfs_forest_prepare_commit(sb, &lt->item_root.ref,
&lt->bloom_ref);
}
#define LOG_MERGE_DELAY_MS (5 * MSEC_PER_SEC)
/*
* Regularly try to get a log merge request from the server. If we get
* a request we walk the log_trees items to find input trees and pass
* them to btree_merge. All of our work is done in dirty blocks
* allocated from available free blocks that the server gave us. If we
* hit an error then we drop our dirty blocks without writing them and
* send an error flag to the server so they can reclaim our allocators
* and ignore the rest of our work.
*/
static void scoutfs_forest_log_merge_worker(struct work_struct *work)
{
struct forest_info *finf = container_of(work, struct forest_info,
log_merge_dwork.work);
struct super_block *sb = finf->sb;
struct scoutfs_btree_root_head *rhead = NULL;
struct scoutfs_btree_root_head *tmp;
struct scoutfs_log_merge_complete comp;
struct scoutfs_log_merge_request req;
struct scoutfs_log_trees *lt;
struct scoutfs_block_writer wri;
struct scoutfs_alloc alloc;
SCOUTFS_BTREE_ITEM_REF(iref);
struct scoutfs_key next;
struct scoutfs_key key;
unsigned long delay;
LIST_HEAD(inputs);
int ret;
ret = scoutfs_client_get_log_merge(sb, &req);
if (ret < 0)
goto resched;
comp.root = req.root;
comp.start = req.start;
comp.end = req.end;
comp.remain = req.end;
comp.rid = req.rid;
comp.seq = req.seq;
comp.flags = 0;
scoutfs_alloc_init(&alloc, &req.meta_avail, &req.meta_freed);
scoutfs_block_writer_init(sb, &wri);
/* find finalized input log trees within the input seq */
for (scoutfs_key_init_log_trees(&key, 0, 0); ; scoutfs_key_inc(&key)) {
if (!rhead) {
rhead = kmalloc(sizeof(*rhead), GFP_NOFS);
if (!rhead) {
ret = -ENOMEM;
goto out;
}
}
ret = scoutfs_btree_next(sb, &req.logs_root, &key, &iref);
if (ret == 0) {
if (iref.val_len == sizeof(*lt)) {
key = *iref.key;
lt = iref.val;
if (lt->item_root.ref.blkno != 0 &&
(le64_to_cpu(lt->flags) & SCOUTFS_LOG_TREES_FINALIZED) &&
(le64_to_cpu(lt->finalize_seq) < le64_to_cpu(req.input_seq))) {
rhead->root = lt->item_root;
list_add_tail(&rhead->head, &inputs);
rhead = NULL;
}
} else {
ret = -EIO;
}
scoutfs_btree_put_iref(&iref);
}
if (ret < 0) {
if (ret == -ENOENT) {
ret = 0;
break;
}
goto out;
}
}
/* shouldn't be possible, but it's harmless */
if (list_empty(&inputs)) {
ret = 0;
goto out;
}
ret = scoutfs_btree_merge(sb, &alloc, &wri, &req.start, &req.end,
&next, &comp.root, &inputs,
!!(req.flags & cpu_to_le64(SCOUTFS_LOG_MERGE_REQUEST_SUBTREE)),
SCOUTFS_LOG_MERGE_DIRTY_BYTE_LIMIT, 10);
if (ret == -ERANGE) {
comp.remain = next;
le64_add_cpu(&comp.flags, SCOUTFS_LOG_MERGE_COMP_REMAIN);
ret = 0;
}
out:
scoutfs_alloc_prepare_commit(sb, &alloc, &wri);
if (ret == 0)
ret = scoutfs_block_writer_write(sb, &wri);
scoutfs_block_writer_forget_all(sb, &wri);
comp.meta_avail = alloc.avail;
comp.meta_freed = alloc.freed;
if (ret < 0)
le64_add_cpu(&comp.flags, SCOUTFS_LOG_MERGE_COMP_ERROR);
ret = scoutfs_client_commit_log_merge(sb, &comp);
kfree(rhead);
list_for_each_entry_safe(rhead, tmp, &inputs, head)
kfree(rhead);
resched:
delay = ret == 0 ? 0 : msecs_to_jiffies(LOG_MERGE_DELAY_MS);
queue_delayed_work(finf->workq, &finf->log_merge_dwork, delay);
}
int scoutfs_forest_setup(struct super_block *sb)
{
struct scoutfs_sb_info *sbi = SCOUTFS_SB(sb);
@@ -763,20 +643,10 @@ int scoutfs_forest_setup(struct super_block *sb)
}
/* the finf fields will be setup as we open a transaction */
finf->sb = sb;
mutex_init(&finf->mutex);
mutex_init(&finf->srch_mutex);
INIT_DELAYED_WORK(&finf->log_merge_dwork,
scoutfs_forest_log_merge_worker);
sbi->forest_info = finf;
finf->workq = alloc_workqueue("scoutfs_log_merge", WQ_NON_REENTRANT |
WQ_UNBOUND | WQ_HIGHPRI, 0);
if (!finf->workq) {
ret = -ENOMEM;
goto out;
}
ret = 0;
out:
if (ret)
@@ -785,24 +655,6 @@ out:
return 0;
}
void scoutfs_forest_start(struct super_block *sb)
{
DECLARE_FOREST_INFO(sb, finf);
queue_delayed_work(finf->workq, &finf->log_merge_dwork,
msecs_to_jiffies(LOG_MERGE_DELAY_MS));
}
void scoutfs_forest_stop(struct super_block *sb)
{
DECLARE_FOREST_INFO(sb, finf);
if (finf && finf->workq) {
cancel_delayed_work_sync(&finf->log_merge_dwork);
destroy_workqueue(finf->workq);
}
}
void scoutfs_forest_destroy(struct super_block *sb)
{
struct scoutfs_sb_info *sbi = SCOUTFS_SB(sb);
@@ -810,7 +662,6 @@ void scoutfs_forest_destroy(struct super_block *sb)
if (finf) {
scoutfs_block_put(sb, finf->srch_bl);
kfree(finf);
sbi->forest_info = NULL;
}

View File

@@ -8,36 +8,29 @@ struct scoutfs_block;
#include "btree.h"
/* caller gives an item to the callback */
enum {
FIC_FS_ROOT = (1 << 0),
FIC_FINALIZED = (1 << 1),
};
typedef int (*scoutfs_forest_item_cb)(struct super_block *sb, struct scoutfs_key *key, u64 seq,
u8 flags, void *val, int val_len, int fic, void *arg);
typedef int (*scoutfs_forest_item_cb)(struct super_block *sb,
struct scoutfs_key *key,
struct scoutfs_log_item_value *liv,
void *val, int val_len, void *arg);
int scoutfs_forest_next_hint(struct super_block *sb, struct scoutfs_key *key,
struct scoutfs_key *next);
int scoutfs_forest_read_items(struct super_block *sb,
struct scoutfs_lock *lock,
struct scoutfs_key *key,
struct scoutfs_key *bloom_key,
struct scoutfs_key *start,
struct scoutfs_key *end,
scoutfs_forest_item_cb cb, void *arg);
int scoutfs_forest_set_bloom_bits(struct super_block *sb,
struct scoutfs_lock *lock);
void scoutfs_forest_set_max_seq(struct super_block *sb, u64 max_seq);
int scoutfs_forest_get_max_seq(struct super_block *sb,
struct scoutfs_super_block *super,
u64 *seq);
void scoutfs_forest_set_max_vers(struct super_block *sb, u64 max_vers);
int scoutfs_forest_get_max_vers(struct super_block *sb,
struct scoutfs_super_block *super,
u64 *vers);
int scoutfs_forest_insert_list(struct super_block *sb,
struct scoutfs_btree_item_list *lst);
int scoutfs_forest_srch_add(struct super_block *sb, u64 hash, u64 ino, u64 id);
void scoutfs_forest_inc_inode_count(struct super_block *sb);
void scoutfs_forest_dec_inode_count(struct super_block *sb);
int scoutfs_forest_inode_count(struct super_block *sb, struct scoutfs_super_block *super,
u64 *inode_count);
void scoutfs_forest_init_btrees(struct super_block *sb,
struct scoutfs_alloc *alloc,
struct scoutfs_block_writer *wri,
@@ -45,15 +38,7 @@ void scoutfs_forest_init_btrees(struct super_block *sb,
void scoutfs_forest_get_btrees(struct super_block *sb,
struct scoutfs_log_trees *lt);
/* > 0 error codes */
#define SCOUTFS_DELTA_COMBINED 1 /* src val was combined, drop src */
#define SCOUTFS_DELTA_COMBINED_NULL 2 /* combined val has no data, drop both */
int scoutfs_forest_combine_deltas(struct scoutfs_key *key, void *dst, int dst_len,
void *src, int src_len);
int scoutfs_forest_setup(struct super_block *sb);
void scoutfs_forest_start(struct super_block *sb);
void scoutfs_forest_stop(struct super_block *sb);
void scoutfs_forest_destroy(struct super_block *sb);
#endif

View File

@@ -1,16 +1,6 @@
#ifndef _SCOUTFS_FORMAT_H_
#define _SCOUTFS_FORMAT_H_
/*
* The format version defines the format of structures on devices,
* structures that are communicated over the wire, and the protocol
* behind the structures.
*/
#define SCOUTFS_FORMAT_VERSION_MIN 1
#define SCOUTFS_FORMAT_VERSION_MIN_STR __stringify(SCOUTFS_FORMAT_VERSION_MIN)
#define SCOUTFS_FORMAT_VERSION_MAX 1
#define SCOUTFS_FORMAT_VERSION_MAX_STR __stringify(SCOUTFS_FORMAT_VERSION_MAX)
/* statfs(2) f_type */
#define SCOUTFS_SUPER_MAGIC 0x554f4353 /* "SCOU" */
@@ -21,7 +11,6 @@
#define SCOUTFS_BLOCK_MAGIC_SRCH_BLOCK 0x897e4a7d
#define SCOUTFS_BLOCK_MAGIC_SRCH_PARENT 0xb23a2a05
#define SCOUTFS_BLOCK_MAGIC_ALLOC_LIST 0x8a93ac83
#define SCOUTFS_BLOCK_MAGIC_QUORUM 0xbc310868
/*
* The super block, quorum block, and file data allocation granularity
@@ -62,19 +51,15 @@
#define SCOUTFS_SUPER_BLKNO ((64ULL * 1024) >> SCOUTFS_BLOCK_SM_SHIFT)
/*
* A small number of quorum blocks follow the super block, enough of
* them to match the starting offset of the super block so the region is
* aligned to the power of two that contains it.
* A reasonably large region of aligned quorum blocks follow the super
* block. Each voting cycle reads the entire region so we don't want it
* to be too enormous. 256K seems like a reasonably chunky single IO.
* The number of blocks in the region also determines the number of
* mounts that have a reasonable probability of not overwriting each
* other's random block locations.
*/
#define SCOUTFS_QUORUM_BLKNO (SCOUTFS_SUPER_BLKNO + 1)
#define SCOUTFS_QUORUM_BLOCKS (SCOUTFS_SUPER_BLKNO - 1)
/*
* Free metadata blocks start after the quorum blocks
*/
#define SCOUTFS_META_DEV_START_BLKNO \
((SCOUTFS_QUORUM_BLKNO + SCOUTFS_QUORUM_BLOCKS) >> \
SCOUTFS_BLOCK_SM_LG_SHIFT)
#define SCOUTFS_QUORUM_BLKNO ((256ULL * 1024) >> SCOUTFS_BLOCK_SM_SHIFT)
#define SCOUTFS_QUORUM_BLOCKS ((256ULL * 1024) >> SCOUTFS_BLOCK_SM_SHIFT)
/*
* Start data on the data device aligned as well.
@@ -93,33 +78,11 @@ struct scoutfs_timespec {
__u8 __pad[4];
};
enum scoutfs_inet_family {
SCOUTFS_AF_NONE = 0,
SCOUTFS_AF_IPV4 = 1,
SCOUTFS_AF_IPV6 = 2,
};
struct scoutfs_inet_addr4 {
__le16 family;
__le16 port;
/* XXX ipv6 */
struct scoutfs_inet_addr {
__le32 addr;
};
/*
* Not yet supported by code.
*/
struct scoutfs_inet_addr6 {
__le16 family;
__le16 port;
__u8 addr[16];
__le32 flow_info;
__le32 scope_id;
__u8 __pad[4];
};
union scoutfs_inet_addr {
struct scoutfs_inet_addr4 v4;
struct scoutfs_inet_addr6 v6;
__u8 __pad[2];
};
/*
@@ -135,15 +98,6 @@ struct scoutfs_block_header {
__le64 blkno;
};
/*
* A reference to a block. The corresponding fields in the block_header
* must match after having read the block contents.
*/
struct scoutfs_block_ref {
__le64 blkno;
__le64 seq;
};
/*
* scoutfs identifies all file system metadata items by a small key
* struct.
@@ -175,11 +129,6 @@ struct scoutfs_key {
#define sko_rid _sk_first
#define sko_ino _sk_second
/* xattr totl */
#define skxt_a _sk_first
#define skxt_b _sk_second
#define skxt_c _sk_third
/* inode */
#define ski_ino _sk_first
@@ -207,16 +156,35 @@ struct scoutfs_key {
#define sklt_rid _sk_first
#define sklt_nr _sk_second
/* lock clients */
#define sklc_rid _sk_first
/* seqs */
#define skts_trans_seq _sk_first
#define skts_rid _sk_second
/* mounted clients */
#define skmc_rid _sk_first
/* free extents by blkno */
#define skfb_end _sk_first
#define skfb_len _sk_second
/* free extents by order */
#define skfo_revord _sk_first
#define skfo_end _sk_second
#define skfo_len _sk_third
#define skfb_end _sk_second
#define skfb_len _sk_third
/* free extents by len */
#define skfl_neglen _sk_second
#define skfl_blkno _sk_third
struct scoutfs_radix_block {
struct scoutfs_block_header hdr;
union {
struct scoutfs_radix_ref {
__le64 blkno;
__le64 seq;
__le64 sm_total;
__le64 lg_total;
} refs[0];
__le64 bits[0];
};
};
struct scoutfs_avl_root {
__le16 node;
@@ -239,12 +207,17 @@ struct scoutfs_avl_node {
*/
#define SCOUTFS_BTREE_MAX_HEIGHT 20
struct scoutfs_btree_ref {
__le64 blkno;
__le64 seq;
};
/*
* A height of X means that the first block read will have level X-1 and
* the leaves will have level 0.
*/
struct scoutfs_btree_root {
struct scoutfs_block_ref ref;
struct scoutfs_btree_ref ref;
__u8 height;
__u8 __pad[7];
};
@@ -252,15 +225,11 @@ struct scoutfs_btree_root {
struct scoutfs_btree_item {
struct scoutfs_avl_node node;
struct scoutfs_key key;
__le64 seq;
__le16 val_off;
__le16 val_len;
__u8 flags;
__u8 __pad[3];
__u8 __pad[4];
};
#define SCOUTFS_ITEM_FLAG_DELETION (1 << 0)
struct scoutfs_btree_block {
struct scoutfs_block_header hdr;
struct scoutfs_avl_root item_root;
@@ -269,7 +238,7 @@ struct scoutfs_btree_block {
__le16 mid_free_len;
__u8 level;
__u8 __pad[7];
struct scoutfs_btree_item items[];
struct scoutfs_btree_item items[0];
/* leaf blocks have a fixed size item offset hash table at the end */
};
@@ -289,19 +258,23 @@ struct scoutfs_btree_block {
#define SCOUTFS_BTREE_LEAF_ITEM_HASH_BYTES \
(SCOUTFS_BTREE_LEAF_ITEM_HASH_NR * sizeof(__le16))
struct scoutfs_alloc_list_ref {
__le64 blkno;
__le64 seq;
};
/*
* first_nr tracks the nr of the first block in the list and is used for
* allocation sizing. total_nr is the sum of the nr of all the blocks in
* the list and is used for calculating total free block counts.
*/
struct scoutfs_alloc_list_head {
struct scoutfs_block_ref ref;
struct scoutfs_alloc_list_ref ref;
__le64 total_nr;
__le32 first_nr;
__le32 flags;
__u8 __pad[4];
};
/*
* While the main allocator uses extent items in btree blocks, metadata
* allocations for a single transaction are recorded in arrays in
@@ -315,10 +288,10 @@ struct scoutfs_alloc_list_head {
*/
struct scoutfs_alloc_list_block {
struct scoutfs_block_header hdr;
struct scoutfs_block_ref next;
struct scoutfs_alloc_list_ref next;
__le32 start;
__le32 nr;
__le64 blknos[]; /* naturally aligned for sorting */
__le64 blknos[0]; /* naturally aligned for sorting */
};
#define SCOUTFS_ALLOC_LIST_MAX_BLOCKS \
@@ -330,28 +303,20 @@ struct scoutfs_alloc_list_block {
*/
struct scoutfs_alloc_root {
__le64 total_len;
__le32 flags;
__le32 _pad;
struct scoutfs_btree_root root;
};
/* Shared by _alloc_list_head and _alloc_root */
#define SCOUTFS_ALLOC_FLAG_LOW (1U << 0)
/* types of allocators, exposed to alloc_detail ioctl */
#define SCOUTFS_ALLOC_OWNER_NONE 0
#define SCOUTFS_ALLOC_OWNER_SERVER 1
#define SCOUTFS_ALLOC_OWNER_MOUNT 2
#define SCOUTFS_ALLOC_OWNER_SRCH 3
#define SCOUTFS_ALLOC_OWNER_LOG_MERGE 4
struct scoutfs_mounted_client_btree_val {
union scoutfs_inet_addr addr;
__u8 flags;
__u8 __pad[7];
};
#define SCOUTFS_MOUNTED_CLIENT_QUORUM (1 << 0)
#define SCOUTFS_MOUNTED_CLIENT_VOTER (1 << 0)
/*
* srch files are a contiguous run of blocks with compressed entries
@@ -369,10 +334,15 @@ struct scoutfs_srch_entry {
#define SCOUTFS_SRCH_ENTRY_MAX_BYTES (2 + (sizeof(__u64) * 3))
struct scoutfs_srch_ref {
__le64 blkno;
__le64 seq;
};
struct scoutfs_srch_file {
struct scoutfs_srch_entry first;
struct scoutfs_srch_entry last;
struct scoutfs_block_ref ref;
struct scoutfs_srch_ref ref;
__le64 blocks;
__le64 entries;
__u8 height;
@@ -381,13 +351,13 @@ struct scoutfs_srch_file {
struct scoutfs_srch_parent {
struct scoutfs_block_header hdr;
struct scoutfs_block_ref refs[];
struct scoutfs_srch_ref refs[0];
};
#define SCOUTFS_SRCH_PARENT_REFS \
((SCOUTFS_BLOCK_LG_SIZE - \
offsetof(struct scoutfs_srch_parent, refs)) / \
sizeof(struct scoutfs_block_ref))
sizeof(struct scoutfs_srch_ref))
struct scoutfs_srch_block {
struct scoutfs_block_header hdr;
@@ -396,7 +366,7 @@ struct scoutfs_srch_block {
struct scoutfs_srch_entry tail;
__le32 entry_nr;
__le32 entry_bytes;
__u8 entries[];
__u8 entries[0];
};
/*
@@ -449,50 +419,44 @@ struct scoutfs_srch_compact {
/* client -> server: compaction failed */
#define SCOUTFS_SRCH_COMPACT_FLAG_ERROR (1 << 5)
#define SCOUTFS_DATA_ALLOC_MAX_ZONES 1024
#define SCOUTFS_DATA_ALLOC_ZONE_BYTES DIV_ROUND_UP(SCOUTFS_DATA_ALLOC_MAX_ZONES, 8)
#define SCOUTFS_DATA_ALLOC_ZONE_LE64S DIV_ROUND_UP(SCOUTFS_DATA_ALLOC_MAX_ZONES, 64)
/*
* XXX I imagine we should rename these now that they've evolved to track
* all the btrees that clients use during a transaction. It's not just
* about item logs, it's about clients making changes to trees.
*
* @get_trans_seq, @commit_trans_seq: These pair of sequence numbers
* determine if a transaction is currently open for the mount that owns
* the log_trees struct. get_trans_seq is advanced by the server as the
* transaction is opened. The server sets comimt_trans_seq equal to
* get_ as the transaction is committed.
*/
struct scoutfs_log_trees {
struct scoutfs_alloc_list_head meta_avail;
struct scoutfs_alloc_list_head meta_freed;
struct scoutfs_btree_root item_root;
struct scoutfs_block_ref bloom_ref;
struct scoutfs_btree_ref bloom_ref;
struct scoutfs_alloc_root data_avail;
struct scoutfs_alloc_root data_freed;
struct scoutfs_srch_file srch_file;
__le64 data_alloc_zone_blocks;
__le64 data_alloc_zones[SCOUTFS_DATA_ALLOC_ZONE_LE64S];
__le64 inode_count_delta;
__le64 get_trans_seq;
__le64 commit_trans_seq;
__le64 max_item_seq;
__le64 finalize_seq;
__le64 max_item_vers;
__le64 rid;
__le64 nr;
__le64 flags;
};
#define SCOUTFS_LOG_TREES_FINALIZED (1ULL << 0)
struct scoutfs_log_item_value {
__le64 vers;
__u8 flags;
__u8 __pad[7];
__u8 data[0];
};
/* FS items are limited by the max btree value length */
#define SCOUTFS_MAX_VAL_SIZE SCOUTFS_BTREE_MAX_VAL_LEN
/*
* FS items are limited by the max btree value length with the log item
* value header.
*/
#define SCOUTFS_MAX_VAL_SIZE \
(SCOUTFS_BTREE_MAX_VAL_LEN - sizeof(struct scoutfs_log_item_value))
#define SCOUTFS_LOG_ITEM_FLAG_DELETION (1 << 0)
struct scoutfs_bloom_block {
struct scoutfs_block_header hdr;
__le64 total_set;
__le64 bits[];
__le64 bits[0];
};
/*
@@ -509,122 +473,50 @@ struct scoutfs_bloom_block {
member_sizeof(struct scoutfs_bloom_block, bits[0]) * 8)
#define SCOUTFS_FOREST_BLOOM_FUNC_BITS (SCOUTFS_BLOCK_LG_SHIFT + 3)
/*
* A private server btree item which records the status of a log merge
* operation that is in progress.
*/
struct scoutfs_log_merge_status {
struct scoutfs_key next_range_key;
__le64 nr_requests;
__le64 nr_complete;
__le64 seq;
};
/*
* A request is sent to the client and stored in a server btree item to
* record resources that would be reclaimed if the client failed. It
* has all the inputs needed for the client to perform its portion of a
* merge.
*/
struct scoutfs_log_merge_request {
struct scoutfs_alloc_list_head meta_avail;
struct scoutfs_alloc_list_head meta_freed;
struct scoutfs_btree_root logs_root;
struct scoutfs_btree_root root;
struct scoutfs_key start;
struct scoutfs_key end;
__le64 input_seq;
__le64 rid;
__le64 seq;
__le64 flags;
};
/* request root is subtree of fs root at parent, restricted merging modifications */
#define SCOUTFS_LOG_MERGE_REQUEST_SUBTREE (1ULL << 0)
/*
* The output of a client's merge of log btree items into a subtree
* rooted at a parent in the fs_root. The client sends it to the
* server, who stores it in a btree item for later splicing/rebalancing.
*/
struct scoutfs_log_merge_complete {
struct scoutfs_alloc_list_head meta_avail;
struct scoutfs_alloc_list_head meta_freed;
struct scoutfs_btree_root root;
struct scoutfs_key start;
struct scoutfs_key end;
struct scoutfs_key remain;
__le64 rid;
__le64 seq;
__le64 flags;
};
/* merge failed, ignore completion and reclaim stored request */
#define SCOUTFS_LOG_MERGE_COMP_ERROR (1ULL << 0)
/* merge didn't complete range, restart from remain */
#define SCOUTFS_LOG_MERGE_COMP_REMAIN (1ULL << 1)
/*
* Range items record the ranges of the fs keyspace that still need to
* be merged. They're added as a merge starts, removed as requests are
* sent and added back if the request didn't consume its entire range.
*/
struct scoutfs_log_merge_range {
struct scoutfs_key start;
struct scoutfs_key end;
};
struct scoutfs_log_merge_freeing {
struct scoutfs_btree_root root;
struct scoutfs_key key;
__le64 seq;
};
/*
* Keys are first sorted by major key zones.
*/
#define SCOUTFS_INODE_INDEX_ZONE 4
#define SCOUTFS_ORPHAN_ZONE 8
#define SCOUTFS_XATTR_TOTL_ZONE 12
#define SCOUTFS_FS_ZONE 16
#define SCOUTFS_LOCK_ZONE 20
#define SCOUTFS_INODE_INDEX_ZONE 1
#define SCOUTFS_RID_ZONE 2
#define SCOUTFS_FS_ZONE 3
#define SCOUTFS_LOCK_ZONE 4
/* Items only stored in server btrees */
#define SCOUTFS_LOG_TREES_ZONE 24
#define SCOUTFS_MOUNTED_CLIENT_ZONE 28
#define SCOUTFS_SRCH_ZONE 32
#define SCOUTFS_FREE_EXTENT_BLKNO_ZONE 36
#define SCOUTFS_FREE_EXTENT_ORDER_ZONE 40
/* Items only stored in log merge server btrees */
#define SCOUTFS_LOG_MERGE_STATUS_ZONE 44
#define SCOUTFS_LOG_MERGE_RANGE_ZONE 48
#define SCOUTFS_LOG_MERGE_REQUEST_ZONE 52
#define SCOUTFS_LOG_MERGE_COMPLETE_ZONE 56
#define SCOUTFS_LOG_MERGE_FREEING_ZONE 60
#define SCOUTFS_LOG_TREES_ZONE 6
#define SCOUTFS_LOCK_CLIENTS_ZONE 7
#define SCOUTFS_TRANS_SEQ_ZONE 8
#define SCOUTFS_MOUNTED_CLIENT_ZONE 9
#define SCOUTFS_SRCH_ZONE 10
#define SCOUTFS_FREE_EXTENT_ZONE 11
/* inode index zone */
#define SCOUTFS_INODE_INDEX_META_SEQ_TYPE 4
#define SCOUTFS_INODE_INDEX_DATA_SEQ_TYPE 8
#define SCOUTFS_INODE_INDEX_META_SEQ_TYPE 1
#define SCOUTFS_INODE_INDEX_DATA_SEQ_TYPE 2
#define SCOUTFS_INODE_INDEX_NR 3 /* don't forget to update */
/* orphan zone, redundant type used for clarity */
#define SCOUTFS_ORPHAN_TYPE 4
/* rid zone (also used in server alloc btree) */
#define SCOUTFS_ORPHAN_TYPE 1
/* fs zone */
#define SCOUTFS_INODE_TYPE 4
#define SCOUTFS_XATTR_TYPE 8
#define SCOUTFS_DIRENT_TYPE 12
#define SCOUTFS_READDIR_TYPE 16
#define SCOUTFS_LINK_BACKREF_TYPE 20
#define SCOUTFS_SYMLINK_TYPE 24
#define SCOUTFS_DATA_EXTENT_TYPE 28
#define SCOUTFS_INODE_TYPE 1
#define SCOUTFS_XATTR_TYPE 2
#define SCOUTFS_DIRENT_TYPE 3
#define SCOUTFS_READDIR_TYPE 4
#define SCOUTFS_LINK_BACKREF_TYPE 5
#define SCOUTFS_SYMLINK_TYPE 6
#define SCOUTFS_DATA_EXTENT_TYPE 7
/* lock zone, only ever found in lock ranges, never in persistent items */
#define SCOUTFS_RENAME_TYPE 4
#define SCOUTFS_RENAME_TYPE 1
/* srch zone, only in server btrees */
#define SCOUTFS_SRCH_LOG_TYPE 4
#define SCOUTFS_SRCH_BLOCKS_TYPE 8
#define SCOUTFS_SRCH_PENDING_TYPE 12
#define SCOUTFS_SRCH_BUSY_TYPE 16
#define SCOUTFS_SRCH_LOG_TYPE 1
#define SCOUTFS_SRCH_BLOCKS_TYPE 2
#define SCOUTFS_SRCH_PENDING_TYPE 3
#define SCOUTFS_SRCH_BUSY_TYPE 4
/* free extents in allocator btrees in client and server, by blkno or len */
#define SCOUTFS_FREE_EXTENT_BLKNO_TYPE 1
#define SCOUTFS_FREE_EXTENT_LEN_TYPE 2
/* file data extents have start and len in key */
struct scoutfs_data_extent_val {
@@ -646,172 +538,91 @@ struct scoutfs_xattr {
__le16 val_len;
__u8 name_len;
__u8 __pad[5];
__u8 name[];
__u8 name[0];
};
/*
* .totl. xattrs are mapped to items. The dotted u64s in the xattr name
* map to the item key. The item value total is the sum of all the
* xattr values. The item value count records the number of xattrs
* contributing to the total and is used when combining logged items to
* determine if totals are being created or destroyed.
*/
struct scoutfs_xattr_totl_val {
__le64 total;
__le64 count;
};
/* XXX does this exist upstream somewhere? */
#define member_sizeof(TYPE, MEMBER) (sizeof(((TYPE *)0)->MEMBER))
#define SCOUTFS_UUID_BYTES 16
#define SCOUTFS_QUORUM_MAX_SLOTS 15
/*
* To elect a leader, members race to have their variable election
* timeouts expire. If they're first to send a vote request with a
* greater term to a majority of waiting members they'll be elected with
* a majority. If the timeouts are too close, the vote may be split and
* everyone will wait for another cycle of variable timeouts to expire.
*
* These determine how long it will take to elect a leader once there's
* no evidence of a server (no leader quorum blocks on mount; heartbeat
* timeout expired.)
* Mounts read all the quorum blocks and write to one random quorum
* block during a cycle. The min cycle time limits the per-mount iop
* load during elections. The random cycle delay makes it less likely
* that mounts will read and write at the same time and miss each
* other's writes. An election only completes if a quorum of mounts
* vote for a leader before any of their elections timeout. This is
* made less likely by the probability that mounts will overwrite each
* others random block locations. The max quorum count limits that
* probability. 9 mounts only have a 55% chance of writing to unique 4k
* blocks in a 256k region. The election timeout is set to include
* enough cycles to usually complete the election. Once a leader is
* elected it spends a number of cycles writing out blocks with itself
* logged as a leader. This reduces the possibility that servers
* will have their log entries overwritten and not be fenced.
*/
#define SCOUTFS_QUORUM_ELECT_MIN_MS 250
#define SCOUTFS_QUORUM_ELECT_VAR_MS 100
/*
* Once a leader is elected they send out heartbeats at regular
* intervals to force members to wait the much longer heartbeat timeout.
* Once heartbeat timeout expires without receiving a heartbeat they'll
* switch over the performing elections.
*
* These determine how long it could take members to notice that a
* leader has gone silent and start to elect a new leader.
*/
#define SCOUTFS_QUORUM_HB_IVAL_MS 100
#define SCOUTFS_QUORUM_HB_TIMEO_MS (5 * MSEC_PER_SEC)
/*
* A newly elected leader will give fencing some time before giving up and
* shutting down.
*/
#define SCOUTFS_QUORUM_FENCE_TO_MS (15 * MSEC_PER_SEC)
struct scoutfs_quorum_message {
__le64 fsid;
__le64 version;
__le64 term;
__u8 type;
__u8 from;
__u8 __pad[2];
__le32 crc;
};
/* a candidate requests a vote */
#define SCOUTFS_QUORUM_MSG_REQUEST_VOTE 0
/* followers send votes to candidates */
#define SCOUTFS_QUORUM_MSG_VOTE 1
/* elected leaders broadcast heartbeats to delay elections */
#define SCOUTFS_QUORUM_MSG_HEARTBEAT 2
/* leaders broadcast as they leave to break heartbeat timeout */
#define SCOUTFS_QUORUM_MSG_RESIGNATION 3
#define SCOUTFS_QUORUM_MSG_INVALID 4
/*
* The version is currently always 0, but will be used by mounts to
* discover that membership has changed.
*/
struct scoutfs_quorum_config {
__le64 version;
struct scoutfs_quorum_slot {
union scoutfs_inet_addr addr;
} slots[SCOUTFS_QUORUM_MAX_SLOTS];
};
enum {
SCOUTFS_QUORUM_EVENT_BEGIN, /* quorum service starting up */
SCOUTFS_QUORUM_EVENT_TERM, /* updated persistent term */
SCOUTFS_QUORUM_EVENT_ELECT, /* won election */
SCOUTFS_QUORUM_EVENT_FENCE, /* server fenced others */
SCOUTFS_QUORUM_EVENT_STOP, /* server stopped */
SCOUTFS_QUORUM_EVENT_END, /* quorum service shutting down */
SCOUTFS_QUORUM_EVENT_NR,
};
#define SCOUTFS_QUORUM_MAX_COUNT 9
#define SCOUTFS_QUORUM_CYCLE_LO_MS 10
#define SCOUTFS_QUORUM_CYCLE_HI_MS 20
#define SCOUTFS_QUORUM_TERM_LO_MS 250
#define SCOUTFS_QUORUM_TERM_HI_MS 500
#define SCOUTFS_QUORUM_ELECTED_LOG_CYCLES 10
struct scoutfs_quorum_block {
struct scoutfs_block_header hdr;
__le64 fsid;
__le64 blkno;
__le64 term;
__le64 write_nr;
struct scoutfs_quorum_block_event {
__le64 write_nr;
__le64 rid;
__le64 voter_rid;
__le64 vote_for_rid;
__le32 crc;
__u8 log_nr;
__u8 __pad[3];
struct scoutfs_quorum_log {
__le64 term;
struct scoutfs_timespec ts;
} events[SCOUTFS_QUORUM_EVENT_NR];
__le64 rid;
struct scoutfs_inet_addr addr;
} log[0];
};
/*
* Tunable options that apply to the entire system. They can be set in
* mkfs or in sysfs files which send an rpc to the server to make the
* change. The super version defines the options that exist.
*
* @set_bits: bits for each 64bit starting offset after set_bits
* indicate which logical option is set.
*
* @data_alloc_zone_blocks: if set, the data device is logically divided
* into contiguous zones of this many blocks. Data allocation will try
* and isolate allocated extents for each mount to their own zone. The
* zone size must be larger than the data alloc high water mark and
* large enough such that the number of zones is kept within its static
* limit.
*/
struct scoutfs_volume_options {
__le64 set_bits;
__le64 data_alloc_zone_blocks;
__le64 __future_expansion[63];
};
#define scoutfs_volopt_nr(field) \
((offsetof(struct scoutfs_volume_options, field) - \
(offsetof(struct scoutfs_volume_options, set_bits) + \
member_sizeof(struct scoutfs_volume_options, set_bits))) / sizeof(__le64))
#define scoutfs_volopt_bit(field) \
(1ULL << scoutfs_volopt_nr(field))
#define SCOUTFS_VOLOPT_DATA_ALLOC_ZONE_BLOCKS_NR \
scoutfs_volopt_nr(data_alloc_zone_blocks)
#define SCOUTFS_VOLOPT_DATA_ALLOC_ZONE_BLOCKS_BIT \
scoutfs_volopt_bit(data_alloc_zone_blocks)
#define SCOUTFS_VOLOPT_EXPANSION_BITS \
(~(scoutfs_volopt_bit(__future_expansion) - 1))
#define SCOUTFS_QUORUM_LOG_MAX \
((SCOUTFS_BLOCK_SM_SIZE - sizeof(struct scoutfs_quorum_block)) / \
sizeof(struct scoutfs_quorum_log))
#define SCOUTFS_FLAG_IS_META_BDEV 0x01
struct scoutfs_super_block {
struct scoutfs_block_header hdr;
__le64 id;
__le64 fmt_vers;
__le64 format_hash;
__le64 flags;
__u8 uuid[SCOUTFS_UUID_BYTES];
__le64 seq;
__le64 next_ino;
__le64 inode_count;
__le64 next_trans_seq;
__le64 total_meta_blocks; /* both static and dynamic */
__le64 first_meta_blkno; /* first dynamically allocated */
__le64 last_meta_blkno;
__le64 total_data_blocks;
struct scoutfs_quorum_config qconf;
__le64 first_data_blkno;
__le64 last_data_blkno;
__le64 quorum_fenced_term;
__le64 quorum_server_term;
__le64 unmount_barrier;
__u8 quorum_count;
__u8 __pad[7];
struct scoutfs_inet_addr server_addr;
struct scoutfs_alloc_root meta_alloc[2];
struct scoutfs_alloc_root data_alloc;
struct scoutfs_alloc_list_head server_meta_avail[2];
struct scoutfs_alloc_list_head server_meta_freed[2];
struct scoutfs_btree_root fs_root;
struct scoutfs_btree_root logs_root;
struct scoutfs_btree_root log_merge;
struct scoutfs_btree_root lock_clients;
struct scoutfs_btree_root trans_seqs;
struct scoutfs_btree_root mounted_clients;
struct scoutfs_btree_root srch_root;
struct scoutfs_volume_options volopt;
};
#define SCOUTFS_ROOT_INO 1
@@ -835,6 +646,13 @@ struct scoutfs_super_block {
*
* @offline_blocks: The number of fixed 4k blocks that could be made
* online by staging.
*
* XXX
* - otime?
* - compat flags?
* - version?
* - generation?
* - be more careful with rdev?
*/
struct scoutfs_inode {
__le64 size;
@@ -845,7 +663,6 @@ struct scoutfs_inode {
__le64 offline_blocks;
__le64 next_readdir_pos;
__le64 next_xattr_id;
__le64 version;
__le32 nlink;
__le32 uid;
__le32 gid;
@@ -855,7 +672,6 @@ struct scoutfs_inode {
struct scoutfs_timespec atime;
struct scoutfs_timespec ctime;
struct scoutfs_timespec mtime;
struct scoutfs_timespec crtime;
};
#define SCOUTFS_INO_FLAG_TRUNCATE 0x1
@@ -879,7 +695,7 @@ struct scoutfs_dirent {
__le64 pos;
__u8 type;
__u8 __pad[7];
__u8 name[];
__u8 name[0];
};
#define SCOUTFS_NAME_LEN 255
@@ -907,7 +723,6 @@ enum scoutfs_dentry_type {
#define SCOUTFS_XATTR_MAX_NAME_LEN 255
#define SCOUTFS_XATTR_MAX_VAL_LEN 65535
#define SCOUTFS_XATTR_MAX_PART_SIZE SCOUTFS_MAX_VAL_SIZE
#define SCOUTFS_XATTR_MAX_TOTL_U64 23 /* octal U64_MAX */
#define SCOUTFS_XATTR_NR_PARTS(name_len, val_len) \
DIV_ROUND_UP(sizeof(struct scoutfs_xattr) + name_len + val_len, \
@@ -931,6 +746,12 @@ enum scoutfs_dentry_type {
* the same serer after receiving a greeting response and to a new
* server after failover.
*
* @unmount_barrier: Incremented every time the remaining majority of
* quorum members all agree to leave. The server tells a quorum member
* the value that it's connecting under so that if the client sees the
* value increase in the super block then it knows that the server has
* processed its farewell and can safely unmount.
*
* @rid: The client's random id that was generated once as the mount
* started up. This identifies a specific remote mount across
* connections and servers. It's set to the client's rid in both the
@@ -938,14 +759,15 @@ enum scoutfs_dentry_type {
*/
struct scoutfs_net_greeting {
__le64 fsid;
__le64 fmt_vers;
__le64 format_hash;
__le64 server_term;
__le64 unmount_barrier;
__le64 rid;
__le64 flags;
};
#define SCOUTFS_NET_GREETING_FLAG_FAREWELL (1 << 0)
#define SCOUTFS_NET_GREETING_FLAG_QUORUM (1 << 1)
#define SCOUTFS_NET_GREETING_FLAG_VOTER (1 << 1)
#define SCOUTFS_NET_GREETING_FLAG_INVALID (~(__u64)0 << 2)
/*
@@ -969,6 +791,7 @@ struct scoutfs_net_greeting {
* response messages.
*/
struct scoutfs_net_header {
__le64 clock_sync_id;
__le64 seq;
__le64 recv_seq;
__le64 id;
@@ -977,7 +800,7 @@ struct scoutfs_net_header {
__u8 flags;
__u8 error;
__u8 __pad[3];
__u8 data[];
__u8 data[0];
};
#define SCOUTFS_NET_FLAG_RESPONSE (1 << 0)
@@ -988,21 +811,13 @@ enum scoutfs_net_cmd {
SCOUTFS_NET_CMD_ALLOC_INODES,
SCOUTFS_NET_CMD_GET_LOG_TREES,
SCOUTFS_NET_CMD_COMMIT_LOG_TREES,
SCOUTFS_NET_CMD_SYNC_LOG_TREES,
SCOUTFS_NET_CMD_GET_ROOTS,
SCOUTFS_NET_CMD_ADVANCE_SEQ,
SCOUTFS_NET_CMD_GET_LAST_SEQ,
SCOUTFS_NET_CMD_LOCK,
SCOUTFS_NET_CMD_LOCK_RECOVER,
SCOUTFS_NET_CMD_SRCH_GET_COMPACT,
SCOUTFS_NET_CMD_SRCH_COMMIT_COMPACT,
SCOUTFS_NET_CMD_GET_LOG_MERGE,
SCOUTFS_NET_CMD_COMMIT_LOG_MERGE,
SCOUTFS_NET_CMD_OPEN_INO_MAP,
SCOUTFS_NET_CMD_GET_VOLOPT,
SCOUTFS_NET_CMD_SET_VOLOPT,
SCOUTFS_NET_CMD_CLEAR_VOLOPT,
SCOUTFS_NET_CMD_RESIZE_DEVICES,
SCOUTFS_NET_CMD_STATFS,
SCOUTFS_NET_CMD_FAREWELL,
SCOUTFS_NET_CMD_UNKNOWN,
};
@@ -1045,32 +860,23 @@ struct scoutfs_net_roots {
struct scoutfs_btree_root srch_root;
};
struct scoutfs_net_resize_devices {
__le64 new_total_meta_blocks;
__le64 new_total_data_blocks;
};
struct scoutfs_net_statfs {
__u8 uuid[SCOUTFS_UUID_BYTES];
__le64 free_meta_blocks;
__le64 total_meta_blocks;
__le64 free_data_blocks;
__le64 total_data_blocks;
__le64 inode_count;
};
struct scoutfs_net_lock {
struct scoutfs_key key;
__le64 write_seq;
__le64 write_version;
__u8 old_mode;
__u8 new_mode;
__u8 __pad[6];
};
struct scoutfs_net_lock_grant_response {
struct scoutfs_net_lock nl;
struct scoutfs_net_roots roots;
};
struct scoutfs_net_lock_recover {
__le16 nr;
__u8 __pad[6];
struct scoutfs_net_lock locks[];
struct scoutfs_net_lock locks[0];
};
#define SCOUTFS_NET_LOCK_MAX_RECOVER_NR \
@@ -1085,7 +891,6 @@ enum scoutfs_lock_trace {
SLT_INVALIDATE,
SLT_REQUEST,
SLT_RESPONSE,
SLT_NR,
};
/*
@@ -1138,42 +943,4 @@ enum scoutfs_corruption_sources {
#define SC_NR_LONGS DIV_ROUND_UP(SC_NR_SOURCES, BITS_PER_LONG)
#define SCOUTFS_OPEN_INO_MAP_SHIFT 10
#define SCOUTFS_OPEN_INO_MAP_BITS (1 << SCOUTFS_OPEN_INO_MAP_SHIFT)
#define SCOUTFS_OPEN_INO_MAP_MASK (SCOUTFS_OPEN_INO_MAP_BITS - 1)
#define SCOUTFS_OPEN_INO_MAP_LE64S (SCOUTFS_OPEN_INO_MAP_BITS / 64)
/*
* The request and response conversation is as follows:
*
* client[init] -> server:
* group_nr = G
* req_id = 0 (I)
* server -> client[*]
* group_nr = G
* req_id = R
* client[*] -> server
* group_nr = G (I)
* req_id = R
* bits
* server -> client[init]
* group_nr = G (I)
* req_id = R (I)
* bits
*
* Many of the fields in individual messages are ignored ("I") because
* the net id or the omap req_id can be used to identify the
* conversation. We always include them on the wire to make inspected
* messages easier to follow.
*/
struct scoutfs_open_ino_map_args {
__le64 group_nr;
__le64 req_id;
};
struct scoutfs_open_ino_map {
struct scoutfs_open_ino_map_args args;
__le64 bits[SCOUTFS_OPEN_INO_MAP_LE64S];
};
#endif

File diff suppressed because it is too large Load Diff

View File

@@ -4,13 +4,12 @@
#include "key.h"
#include "lock.h"
#include "per_task.h"
#include "count.h"
#include "format.h"
#include "data.h"
struct scoutfs_lock;
#define SCOUTFS_INODE_NR_INDICES 2
struct scoutfs_inode_info {
/* read or initialized for each inode instance */
u64 ino;
@@ -22,7 +21,6 @@ struct scoutfs_inode_info {
u64 online_blocks;
u64 offline_blocks;
u32 flags;
struct timespec crtime;
/*
* Protects per-inode extent items, most particularly readers
@@ -40,8 +38,8 @@ struct scoutfs_inode_info {
*/
struct mutex item_mutex;
bool have_item;
u64 item_majors[SCOUTFS_INODE_NR_INDICES];
u32 item_minors[SCOUTFS_INODE_NR_INDICES];
u64 item_majors[SCOUTFS_INODE_INDEX_NR];
u32 item_minors[SCOUTFS_INODE_INDEX_NR];
/* updated at on each new lock acquisition */
atomic64_t last_refreshed;
@@ -52,20 +50,11 @@ struct scoutfs_inode_info {
struct scoutfs_per_task pt_data_lock;
struct scoutfs_data_waitq data_waitq;
struct rw_semaphore xattr_rwsem;
struct list_head writeback_entry;
struct scoutfs_lock_coverage ino_lock_cov;
struct list_head iput_head;
unsigned long iput_count;
unsigned long iput_flags;
struct rb_node writeback_node;
struct inode inode;
};
/* try to prune dcache aliases with queued iput */
#define SI_IPUT_FLAG_PRUNE (1 << 0)
static inline struct scoutfs_inode_info *SCOUTFS_I(struct inode *inode)
{
return container_of(inode, struct scoutfs_inode_info, inode);
@@ -80,15 +69,11 @@ struct inode *scoutfs_alloc_inode(struct super_block *sb);
void scoutfs_destroy_inode(struct inode *inode);
int scoutfs_drop_inode(struct inode *inode);
void scoutfs_evict_inode(struct inode *inode);
void scoutfs_inode_queue_iput(struct inode *inode, unsigned long flags);
int scoutfs_orphan_inode(struct inode *inode);
#define SCOUTFS_IGF_LINKED (1 << 0) /* enoent if nlink == 0 */
struct inode *scoutfs_iget(struct super_block *sb, u64 ino, int lkf, int igf);
struct inode *scoutfs_ilookup_nowait(struct super_block *sb, u64 ino);
struct inode *scoutfs_ilookup_nowait_nonewfree(struct super_block *sb, u64 ino);
struct inode *scoutfs_iget(struct super_block *sb, u64 ino);
struct inode *scoutfs_ilookup(struct super_block *sb, u64 ino);
void scoutfs_inode_init_key(struct scoutfs_key *key, u64 ino);
void scoutfs_inode_init_index_key(struct scoutfs_key *key, u8 type, u64 major,
u32 minor, u64 ino);
int scoutfs_inode_index_start(struct super_block *sb, u64 *seq);
@@ -98,9 +83,11 @@ int scoutfs_inode_index_prepare_ino(struct super_block *sb,
struct list_head *list, u64 ino,
umode_t mode);
int scoutfs_inode_index_try_lock_hold(struct super_block *sb,
struct list_head *list, u64 seq, bool allocing);
struct list_head *list, u64 seq,
const struct scoutfs_item_count cnt);
int scoutfs_inode_index_lock_hold(struct inode *inode, struct list_head *list,
bool set_data_seq, bool allocing);
bool set_data_seq,
const struct scoutfs_item_count cnt);
void scoutfs_inode_index_unlock(struct super_block *sb, struct list_head *list);
int scoutfs_dirty_inode_item(struct inode *inode, struct scoutfs_lock *lock);
@@ -108,8 +95,9 @@ void scoutfs_update_inode_item(struct inode *inode, struct scoutfs_lock *lock,
struct list_head *ind_locks);
int scoutfs_alloc_ino(struct super_block *sb, bool is_dir, u64 *ino_ret);
int scoutfs_new_inode(struct super_block *sb, struct inode *dir, umode_t mode, dev_t rdev,
u64 ino, struct scoutfs_lock *lock, struct inode **inode_ret);
struct inode *scoutfs_new_inode(struct super_block *sb, struct inode *dir,
umode_t mode, dev_t rdev, u64 ino,
struct scoutfs_lock *lock);
void scoutfs_inode_set_meta_seq(struct inode *inode);
void scoutfs_inode_set_data_seq(struct inode *inode);
@@ -122,27 +110,23 @@ u64 scoutfs_inode_data_version(struct inode *inode);
void scoutfs_inode_get_onoff(struct inode *inode, s64 *on, s64 *off);
int scoutfs_complete_truncate(struct inode *inode, struct scoutfs_lock *lock);
int scoutfs_inode_refresh(struct inode *inode, struct scoutfs_lock *lock);
int scoutfs_inode_refresh(struct inode *inode, struct scoutfs_lock *lock,
int flags);
int scoutfs_getattr(struct vfsmount *mnt, struct dentry *dentry,
struct kstat *stat);
int scoutfs_setattr(struct dentry *dentry, struct iattr *attr);
int scoutfs_inode_orphan_create(struct super_block *sb, u64 ino, struct scoutfs_lock *lock,
struct scoutfs_lock *primary);
int scoutfs_inode_orphan_delete(struct super_block *sb, u64 ino, struct scoutfs_lock *lock,
struct scoutfs_lock *primary);
void scoutfs_inode_schedule_orphan_dwork(struct super_block *sb);
int scoutfs_scan_orphans(struct super_block *sb);
void scoutfs_inode_queue_writeback(struct inode *inode);
int scoutfs_inode_walk_writeback(struct super_block *sb, bool write);
u64 scoutfs_last_ino(struct super_block *sb);
void scoutfs_inode_exit(void);
int scoutfs_inode_init(void);
int scoutfs_inode_setup(struct super_block *sb);
void scoutfs_inode_start(struct super_block *sb);
void scoutfs_inode_orphan_stop(struct super_block *sb);
void scoutfs_inode_flush_iput(struct super_block *sb);
void scoutfs_inode_destroy(struct super_block *sb);
#endif

View File

@@ -21,7 +21,6 @@
#include <linux/mm.h>
#include <linux/sched.h>
#include <linux/aio.h>
#include <linux/list_sort.h>
#include "format.h"
#include "key.h"
@@ -39,8 +38,6 @@
#include "hash.h"
#include "srch.h"
#include "alloc.h"
#include "server.h"
#include "counters.h"
#include "scoutfs_trace.h"
/*
@@ -387,7 +384,7 @@ static long scoutfs_ioc_data_wait_err(struct file *file, unsigned long arg)
if (sblock > eblock)
return -EINVAL;
inode = scoutfs_ilookup_nowait_nonewfree(sb, args.ino);
inode = scoutfs_ilookup(sb, args.ino);
if (!inode) {
ret = -ESTALE;
goto out;
@@ -543,17 +540,19 @@ out:
static long scoutfs_ioc_stat_more(struct file *file, unsigned long arg)
{
struct inode *inode = file_inode(file);
struct scoutfs_inode_info *si = SCOUTFS_I(inode);
struct scoutfs_ioctl_stat_more stm;
if (get_user(stm.valid_bytes, (__u64 __user *)arg))
return -EFAULT;
stm.valid_bytes = min_t(u64, stm.valid_bytes,
sizeof(struct scoutfs_ioctl_stat_more));
stm.meta_seq = scoutfs_inode_meta_seq(inode);
stm.data_seq = scoutfs_inode_data_seq(inode);
stm.data_version = scoutfs_inode_data_version(inode);
scoutfs_inode_get_onoff(inode, &stm.online_blocks, &stm.offline_blocks);
stm.crtime_sec = si->crtime.tv_sec;
stm.crtime_nsec = si->crtime.tv_nsec;
if (copy_to_user((void __user *)arg, &stm, sizeof(stm)))
if (copy_to_user((void __user *)arg, &stm, stm.valid_bytes))
return -EFAULT;
return 0;
@@ -617,7 +616,6 @@ static long scoutfs_ioc_data_waiting(struct file *file, unsigned long arg)
static long scoutfs_ioc_setattr_more(struct file *file, unsigned long arg)
{
struct inode *inode = file->f_inode;
struct scoutfs_inode_info *si = SCOUTFS_I(inode);
struct super_block *sb = inode->i_sb;
struct scoutfs_ioctl_setattr_more __user *usm = (void __user *)arg;
struct scoutfs_ioctl_setattr_more sm;
@@ -676,7 +674,8 @@ static long scoutfs_ioc_setattr_more(struct file *file, unsigned long arg)
/* setting only so we don't see 0 data seq with nonzero data_version */
set_data_seq = sm.data_version != 0 ? true : false;
ret = scoutfs_inode_index_lock_hold(inode, &ind_locks, set_data_seq, false);
ret = scoutfs_inode_index_lock_hold(inode, &ind_locks, set_data_seq,
SIC_SETATTR_MORE());
if (ret)
goto unlock;
@@ -686,8 +685,6 @@ static long scoutfs_ioc_setattr_more(struct file *file, unsigned long arg)
i_size_write(inode, sm.i_size);
inode->i_ctime.tv_sec = sm.ctime_sec;
inode->i_ctime.tv_nsec = sm.ctime_nsec;
si->crtime.tv_sec = sm.crtime_sec;
si->crtime.tv_nsec = sm.crtime_nsec;
scoutfs_update_inode_item(inode, lock, &ind_locks);
ret = 0;
@@ -870,35 +867,28 @@ static long scoutfs_ioc_statfs_more(struct file *file, unsigned long arg)
{
struct super_block *sb = file_inode(file)->i_sb;
struct scoutfs_sb_info *sbi = SCOUTFS_SB(sb);
struct scoutfs_super_block *super;
struct scoutfs_super_block *super = &sbi->super;
struct scoutfs_ioctl_statfs_more sfm;
int ret;
super = kzalloc(sizeof(struct scoutfs_super_block), GFP_NOFS);
if (!super)
return -ENOMEM;
ret = scoutfs_read_super(sb, super);
if (ret)
goto out;
if (get_user(sfm.valid_bytes, (__u64 __user *)arg))
return -EFAULT;
sfm.valid_bytes = min_t(u64, sfm.valid_bytes,
sizeof(struct scoutfs_ioctl_statfs_more));
sfm.fsid = le64_to_cpu(super->hdr.fsid);
sfm.rid = sbi->rid;
sfm.total_meta_blocks = le64_to_cpu(super->total_meta_blocks);
sfm.total_data_blocks = le64_to_cpu(super->total_data_blocks);
sfm.reserved_meta_blocks = scoutfs_server_reserved_meta_blocks(sb);
ret = scoutfs_client_get_last_seq(sb, &sfm.committed_seq);
if (ret)
goto out;
return ret;
if (copy_to_user((void __user *)arg, &sfm, sizeof(sfm)))
ret = -EFAULT;
else
ret = 0;
out:
kfree(super);
return ret;
if (copy_to_user((void __user *)arg, &sfm, sfm.valid_bytes))
return -EFAULT;
return 0;
}
struct copy_alloc_detail_args {
@@ -983,18 +973,12 @@ static long scoutfs_ioc_move_blocks(struct file *file, unsigned long arg)
goto out;
}
if (mb.flags & SCOUTFS_IOC_MB_UNKNOWN) {
ret = -EINVAL;
goto out;
}
ret = mnt_want_write_file(file);
if (ret < 0)
goto out;
ret = scoutfs_data_move_blocks(from, mb.from_off, mb.len,
to, mb.to_off, !!(mb.flags & SCOUTFS_IOC_MB_STAGE),
mb.data_version);
to, mb.to_off);
mnt_drop_write_file(file);
out:
fput(from_file);
@@ -1002,402 +986,6 @@ out:
return ret;
}
static long scoutfs_ioc_resize_devices(struct file *file, unsigned long arg)
{
struct super_block *sb = file_inode(file)->i_sb;
struct scoutfs_ioctl_resize_devices __user *urd = (void __user *)arg;
struct scoutfs_ioctl_resize_devices rd;
struct scoutfs_net_resize_devices nrd;
int ret;
if (!(file->f_mode & FMODE_READ)) {
ret = -EBADF;
goto out;
}
if (!capable(CAP_SYS_ADMIN)) {
ret = -EPERM;
goto out;
}
if (copy_from_user(&rd, urd, sizeof(rd))) {
ret = -EFAULT;
goto out;
}
nrd.new_total_meta_blocks = cpu_to_le64(rd.new_total_meta_blocks);
nrd.new_total_data_blocks = cpu_to_le64(rd.new_total_data_blocks);
ret = scoutfs_client_resize_devices(sb, &nrd);
out:
return ret;
}
struct xattr_total_entry {
struct rb_node node;
struct scoutfs_ioctl_xattr_total xt;
u64 fs_seq;
u64 fs_total;
u64 fs_count;
u64 fin_seq;
u64 fin_total;
s64 fin_count;
u64 log_seq;
u64 log_total;
s64 log_count;
};
static int cmp_xt_entry_name(const struct xattr_total_entry *a,
const struct xattr_total_entry *b)
{
return scoutfs_cmp_u64s(a->xt.name[0], b->xt.name[0]) ?:
scoutfs_cmp_u64s(a->xt.name[1], b->xt.name[1]) ?:
scoutfs_cmp_u64s(a->xt.name[2], b->xt.name[2]);
}
/*
* Record the contribution of the three classes of logged items we can
* see: the item in the fs_root, items from finalized log btrees, and
* items from active log btrees. Once we have the full set the caller
* can decide which of the items contribute to the total it sends to the
* user.
*/
static int read_xattr_total_item(struct super_block *sb, struct scoutfs_key *key,
u64 seq, u8 flags, void *val, int val_len, int fic, void *arg)
{
struct scoutfs_xattr_totl_val *tval = val;
struct xattr_total_entry *ent;
struct xattr_total_entry rd;
struct rb_root *root = arg;
struct rb_node *parent;
struct rb_node **node;
int cmp;
rd.xt.name[0] = le64_to_cpu(key->skxt_a);
rd.xt.name[1] = le64_to_cpu(key->skxt_b);
rd.xt.name[2] = le64_to_cpu(key->skxt_c);
/* find entry matching name */
node = &root->rb_node;
parent = NULL;
cmp = -1;
while (*node) {
parent = *node;
ent = container_of(*node, struct xattr_total_entry, node);
/* sort merge items by key then newest to oldest */
cmp = cmp_xt_entry_name(&rd, ent);
if (cmp < 0)
node = &(*node)->rb_left;
else if (cmp > 0)
node = &(*node)->rb_right;
else
break;
}
/* allocate and insert new node if we need to */
if (cmp != 0) {
ent = kzalloc(sizeof(*ent), GFP_KERNEL);
if (!ent)
return -ENOMEM;
memcpy(&ent->xt.name, &rd.xt.name, sizeof(ent->xt.name));
rb_link_node(&ent->node, parent, node);
rb_insert_color(&ent->node, root);
}
if (fic & FIC_FS_ROOT) {
ent->fs_seq = seq;
ent->fs_total = le64_to_cpu(tval->total);
ent->fs_count = le64_to_cpu(tval->count);
} else if (fic & FIC_FINALIZED) {
ent->fin_seq = seq;
ent->fin_total += le64_to_cpu(tval->total);
ent->fin_count += le64_to_cpu(tval->count);
} else {
ent->log_seq = seq;
ent->log_total += le64_to_cpu(tval->total);
ent->log_count += le64_to_cpu(tval->count);
}
scoutfs_inc_counter(sb, totl_read_item);
return 0;
}
/* these are always _safe, node stores next */
#define for_each_xt_ent(ent, node, root) \
for (node = rb_first(root); \
node && (ent = rb_entry(node, struct xattr_total_entry, node), \
node = rb_next(node), 1); )
#define for_each_xt_ent_reverse(ent, node, root) \
for (node = rb_last(root); \
node && (ent = rb_entry(node, struct xattr_total_entry, node), \
node = rb_prev(node), 1); )
static void free_xt_ent(struct rb_root *root, struct xattr_total_entry *ent)
{
rb_erase(&ent->node, root);
kfree(ent);
}
static void free_all_xt_ents(struct rb_root *root)
{
struct xattr_total_entry *ent;
struct rb_node *node;
for_each_xt_ent(ent, node, root)
free_xt_ent(root, ent);
}
/*
* Starting from the caller's pos_name, copy the names, totals, and
* counts for the .totl. tagged xattrs in the system sorted by their
* name until the user's buffer is full. This only sees xattrs that
* have been committed. It doesn't use locking to force commits and
* block writers so it can be a little bit out of date with respect to
* dirty xattrs in memory across the system.
*
* Our reader has to be careful because the log btree merging code can
* write partial results to the fs_root. This means that a reader can
* see both cases where new finalized logs should be applied to the old
* fs items and where old finalized logs have already been applied to
* the partially merged fs items. Currently active logged items are
* always applied on top of all cases.
*
* These cases are differentiated with a combination of sequence numbers
* in items, the count of contributing xattrs, and a flag
* differentiating finalized and active logged items. This lets us
* recognize all cases, including when finalized logs were merged and
* deleted the fs item.
*
* We're allocating a tracking struct for each totl name we see while
* traversing the item btrees. The forest reader is providing the items
* it finds in leaf blocks that contain the search key. In the worst
* case all of these blocks are full and none of the items overlap. At
* most, figure order a thousand names per mount. But in practice many
* of these factors fall away: leaf blocks aren't fill, leaf items
* overlap, there aren't finalized log btrees, and not all mounts are
* actively changing totals. We're much more likely to only read a
* leaf block's worth of totals that have been long since merged into
* the fs_root.
*/
static long scoutfs_ioc_read_xattr_totals(struct file *file, unsigned long arg)
{
struct super_block *sb = file_inode(file)->i_sb;
struct scoutfs_ioctl_read_xattr_totals __user *urxt = (void __user *)arg;
struct scoutfs_ioctl_read_xattr_totals rxt;
struct scoutfs_ioctl_xattr_total __user *uxt;
struct xattr_total_entry *ent;
struct scoutfs_key key;
struct scoutfs_key bloom_key;
struct scoutfs_key start;
struct scoutfs_key end;
struct rb_root root = RB_ROOT;
struct rb_node *node;
int count = 0;
int ret;
if (!(file->f_mode & FMODE_READ)) {
ret = -EBADF;
goto out;
}
if (!capable(CAP_SYS_ADMIN)) {
ret = -EPERM;
goto out;
}
if (copy_from_user(&rxt, urxt, sizeof(rxt))) {
ret = -EFAULT;
goto out;
}
uxt = (void __user *)rxt.totals_ptr;
if ((rxt.totals_ptr & (sizeof(__u64) - 1)) ||
(rxt.totals_bytes < sizeof(struct scoutfs_ioctl_xattr_total))) {
ret = -EINVAL;
goto out;
}
scoutfs_key_set_zeros(&bloom_key);
bloom_key.sk_zone = SCOUTFS_XATTR_TOTL_ZONE;
scoutfs_xattr_init_totl_key(&start, rxt.pos_name);
while (rxt.totals_bytes >= sizeof(struct scoutfs_ioctl_xattr_total)) {
scoutfs_key_set_ones(&end);
end.sk_zone = SCOUTFS_XATTR_TOTL_ZONE;
if (scoutfs_key_compare(&start, &end) > 0)
break;
key = start;
ret = scoutfs_forest_read_items(sb, &key, &bloom_key, &start, &end,
read_xattr_total_item, &root);
if (ret < 0) {
if (ret == -ESTALE) {
free_all_xt_ents(&root);
continue;
}
goto out;
}
if (RB_EMPTY_ROOT(&root))
break;
/* trim totals that fall outside of the consistent range */
for_each_xt_ent(ent, node, &root) {
scoutfs_xattr_init_totl_key(&key, ent->xt.name);
if (scoutfs_key_compare(&key, &start) < 0) {
free_xt_ent(&root, ent);
} else {
break;
}
}
for_each_xt_ent_reverse(ent, node, &root) {
scoutfs_xattr_init_totl_key(&key, ent->xt.name);
if (scoutfs_key_compare(&key, &end) > 0) {
free_xt_ent(&root, ent);
} else {
break;
}
}
/* copy resulting unique non-zero totals to userspace */
for_each_xt_ent(ent, node, &root) {
if (rxt.totals_bytes < sizeof(ent->xt))
break;
/* start with the fs item if we have it */
if (ent->fs_seq != 0) {
ent->xt.total = ent->fs_total;
ent->xt.count = ent->fs_count;
scoutfs_inc_counter(sb, totl_read_fs);
}
/* apply finalized logs if they're newer or creating */
if (((ent->fs_seq != 0) && (ent->fin_seq > ent->fs_seq)) ||
((ent->fs_seq == 0) && (ent->fin_count > 0))) {
ent->xt.total += ent->fin_total;
ent->xt.count += ent->fin_count;
scoutfs_inc_counter(sb, totl_read_finalized);
}
/* always apply active logs which must be newer than fs and finalized */
if (ent->log_seq > 0) {
ent->xt.total += ent->log_total;
ent->xt.count += ent->log_count;
scoutfs_inc_counter(sb, totl_read_logged);
}
if (ent->xt.total != 0 || ent->xt.count != 0) {
if (copy_to_user(uxt, &ent->xt, sizeof(ent->xt))) {
ret = -EFAULT;
goto out;
}
uxt++;
rxt.totals_bytes -= sizeof(ent->xt);
count++;
scoutfs_inc_counter(sb, totl_read_copied);
}
free_xt_ent(&root, ent);
}
/* continue after the last possible key read */
start = end;
scoutfs_key_inc(&start);
}
ret = 0;
out:
free_all_xt_ents(&root);
return ret ?: count;
}
static long scoutfs_ioc_get_allocated_inos(struct file *file, unsigned long arg)
{
struct super_block *sb = file_inode(file)->i_sb;
struct scoutfs_ioctl_get_allocated_inos __user *ugai = (void __user *)arg;
struct scoutfs_ioctl_get_allocated_inos gai;
struct scoutfs_lock *lock = NULL;
struct scoutfs_key key;
struct scoutfs_key end;
u64 __user *uinos;
u64 bytes;
u64 ino;
int nr;
int ret;
if (!(file->f_mode & FMODE_READ)) {
ret = -EBADF;
goto out;
}
if (!capable(CAP_SYS_ADMIN)) {
ret = -EPERM;
goto out;
}
if (copy_from_user(&gai, ugai, sizeof(gai))) {
ret = -EFAULT;
goto out;
}
if ((gai.inos_ptr & (sizeof(__u64) - 1)) || (gai.inos_bytes < sizeof(__u64))) {
ret = -EINVAL;
goto out;
}
scoutfs_inode_init_key(&key, gai.start_ino);
scoutfs_inode_init_key(&end, gai.start_ino | SCOUTFS_LOCK_INODE_GROUP_MASK);
uinos = (void __user *)gai.inos_ptr;
bytes = gai.inos_bytes;
nr = 0;
ret = scoutfs_lock_ino(sb, SCOUTFS_LOCK_READ, 0, gai.start_ino, &lock);
if (ret < 0)
goto out;
while (bytes >= sizeof(*uinos)) {
ret = scoutfs_item_next(sb, &key, &end, NULL, 0, lock);
if (ret < 0) {
if (ret == -ENOENT)
ret = 0;
break;
}
if (key.sk_zone != SCOUTFS_FS_ZONE) {
ret = 0;
break;
}
/* all fs items are owned by allocated inodes, and _first is always ino */
ino = le64_to_cpu(key._sk_first);
if (put_user(ino, uinos)) {
ret = -EFAULT;
break;
}
uinos++;
bytes -= sizeof(*uinos);
if (++nr == INT_MAX)
break;
scoutfs_inode_init_key(&key, ino + 1);
}
scoutfs_unlock(sb, lock, SCOUTFS_LOCK_READ);
out:
return ret ?: nr;
}
long scoutfs_ioctl(struct file *file, unsigned int cmd, unsigned long arg)
{
switch (cmd) {
@@ -1427,12 +1015,6 @@ long scoutfs_ioctl(struct file *file, unsigned int cmd, unsigned long arg)
return scoutfs_ioc_alloc_detail(file, arg);
case SCOUTFS_IOC_MOVE_BLOCKS:
return scoutfs_ioc_move_blocks(file, arg);
case SCOUTFS_IOC_RESIZE_DEVICES:
return scoutfs_ioc_resize_devices(file, arg);
case SCOUTFS_IOC_READ_XATTR_TOTALS:
return scoutfs_ioc_read_xattr_totals(file, arg);
case SCOUTFS_IOC_GET_ALLOCATED_INOS:
return scoutfs_ioc_get_allocated_inos(file, arg);
}
return -ENOTTY;

View File

@@ -13,7 +13,8 @@
* This is enforced by pahole scripting in external build environments.
*/
#define SCOUTFS_IOCTL_MAGIC 0xE8 /* arbitrarily chosen hole in ioctl-number.rst */
/* XXX I have no idea how these are chosen. */
#define SCOUTFS_IOCTL_MAGIC 's'
/*
* Packed scoutfs keys rarely cross the ioctl boundary so we have a
@@ -87,7 +88,7 @@ enum scoutfs_ino_walk_seq_type {
* Adds entries to the user's buffer for each inode that is found in the
* given index between the first and last positions.
*/
#define SCOUTFS_IOC_WALK_INODES _IOW(SCOUTFS_IOCTL_MAGIC, 1, \
#define SCOUTFS_IOC_WALK_INODES _IOR(SCOUTFS_IOCTL_MAGIC, 1, \
struct scoutfs_ioctl_walk_inodes)
/*
@@ -162,11 +163,11 @@ struct scoutfs_ioctl_ino_path_result {
__u64 dir_pos;
__u16 path_bytes;
__u8 _pad[6];
__u8 path[];
__u8 path[0];
};
/* Get a single path from the root to the given inode number */
#define SCOUTFS_IOC_INO_PATH _IOW(SCOUTFS_IOCTL_MAGIC, 2, \
#define SCOUTFS_IOC_INO_PATH _IOR(SCOUTFS_IOCTL_MAGIC, 2, \
struct scoutfs_ioctl_ino_path)
/*
@@ -214,16 +215,23 @@ struct scoutfs_ioctl_stage {
/*
* Give the user inode fields that are not otherwise visible. statx()
* isn't always available and xattrs are relatively expensive.
*
* @valid_bytes stores the number of bytes that are valid in the
* structure. The caller sets this to the size of the struct that they
* understand. The kernel then fills and copies back the min of the
* size they and the user caller understand. The user can tell if a
* field is set if all of its bytes are within the valid_bytes that the
* kernel set on return.
*
* New fields are only added to the end of the struct.
*/
struct scoutfs_ioctl_stat_more {
__u64 valid_bytes;
__u64 meta_seq;
__u64 data_seq;
__u64 data_version;
__u64 online_blocks;
__u64 offline_blocks;
__u64 crtime_sec;
__u32 crtime_nsec;
__u8 _pad[4];
};
#define SCOUTFS_IOC_STAT_MORE _IOR(SCOUTFS_IOCTL_MAGIC, 5, \
@@ -251,16 +259,15 @@ struct scoutfs_ioctl_data_waiting {
__u8 _pad[6];
};
#define SCOUTFS_IOC_DATA_WAITING_FLAGS_UNKNOWN (U64_MAX << 0)
#define SCOUTFS_IOC_DATA_WAITING_FLAGS_UNKNOWN (U8_MAX << 0)
#define SCOUTFS_IOC_DATA_WAITING _IOW(SCOUTFS_IOCTL_MAGIC, 6, \
#define SCOUTFS_IOC_DATA_WAITING _IOR(SCOUTFS_IOCTL_MAGIC, 6, \
struct scoutfs_ioctl_data_waiting)
/*
* If i_size is set then data_version must be non-zero. If the offline
* flag is set then i_size must be set and a offline extent will be
* created from offset 0 to i_size. The time fields are always applied
* to the inode.
* created from offset 0 to i_size.
*/
struct scoutfs_ioctl_setattr_more {
__u64 data_version;
@@ -268,12 +275,11 @@ struct scoutfs_ioctl_setattr_more {
__u64 flags;
__u64 ctime_sec;
__u32 ctime_nsec;
__u32 crtime_nsec;
__u64 crtime_sec;
__u8 _pad[4];
};
#define SCOUTFS_IOC_SETATTR_MORE_OFFLINE (1 << 0)
#define SCOUTFS_IOC_SETATTR_MORE_UNKNOWN (U64_MAX << 1)
#define SCOUTFS_IOC_SETATTR_MORE_UNKNOWN (U8_MAX << 1)
#define SCOUTFS_IOC_SETATTR_MORE _IOW(SCOUTFS_IOCTL_MAGIC, 7, \
struct scoutfs_ioctl_setattr_more)
@@ -285,8 +291,8 @@ struct scoutfs_ioctl_listxattr_hidden {
__u32 hash_pos;
};
#define SCOUTFS_IOC_LISTXATTR_HIDDEN _IOWR(SCOUTFS_IOCTL_MAGIC, 8, \
struct scoutfs_ioctl_listxattr_hidden)
#define SCOUTFS_IOC_LISTXATTR_HIDDEN _IOR(SCOUTFS_IOCTL_MAGIC, 8, \
struct scoutfs_ioctl_listxattr_hidden)
/*
* Return the inode numbers of inodes which might contain the given
@@ -339,23 +345,32 @@ struct scoutfs_ioctl_search_xattrs {
/* set in output_flags if returned inodes reached last_ino */
#define SCOUTFS_SEARCH_XATTRS_OFLAG_END (1ULL << 0)
#define SCOUTFS_IOC_SEARCH_XATTRS _IOW(SCOUTFS_IOCTL_MAGIC, 9, \
struct scoutfs_ioctl_search_xattrs)
#define SCOUTFS_IOC_SEARCH_XATTRS _IOR(SCOUTFS_IOCTL_MAGIC, 9, \
struct scoutfs_ioctl_search_xattrs)
/*
* Give the user information about the filesystem.
*
* @valid_bytes stores the number of bytes that are valid in the
* structure. The caller sets this to the size of the struct that they
* understand. The kernel then fills and copies back the min of the
* size they and the user caller understand. The user can tell if a
* field is set if all of its bytes are within the valid_bytes that the
* kernel set on return.
*
* @committed_seq: All seqs up to and including this seq have been
* committed. Can be compared with meta_seq and data_seq from inodes in
* stat_more to discover if changes have been committed to disk.
*
* New fields are only added to the end of the struct.
*/
struct scoutfs_ioctl_statfs_more {
__u64 valid_bytes;
__u64 fsid;
__u64 rid;
__u64 committed_seq;
__u64 total_meta_blocks;
__u64 total_data_blocks;
__u64 reserved_meta_blocks;
};
#define SCOUTFS_IOC_STATFS_MORE _IOR(SCOUTFS_IOCTL_MAGIC, 10, \
@@ -376,7 +391,7 @@ struct scoutfs_ioctl_data_wait_err {
__s64 err;
};
#define SCOUTFS_IOC_DATA_WAIT_ERR _IOW(SCOUTFS_IOCTL_MAGIC, 11, \
#define SCOUTFS_IOC_DATA_WAIT_ERR _IOR(SCOUTFS_IOCTL_MAGIC, 11, \
struct scoutfs_ioctl_data_wait_err)
@@ -395,7 +410,7 @@ struct scoutfs_ioctl_alloc_detail_entry {
__u8 __pad[6];
};
#define SCOUTFS_IOC_ALLOC_DETAIL _IOW(SCOUTFS_IOCTL_MAGIC, 12, \
#define SCOUTFS_IOC_ALLOC_DETAIL _IOR(SCOUTFS_IOCTL_MAGIC, 12, \
struct scoutfs_ioctl_alloc_detail)
/*
@@ -403,13 +418,12 @@ struct scoutfs_ioctl_alloc_detail_entry {
* on the same file system.
*
* from_fd specifies the source file and the ioctl is called on the
* destination file. Both files must have write access. from_off specifies
* the byte offset in the source, to_off is the byte offset in the
* destination, and len is the number of bytes in the region to move. All of
* the offsets and lengths must be in multiples of 4KB, except in the case
* where the from_off + len ends at the i_size of the source
* file. data_version is only used when STAGE flag is set (see below). flags
* field is currently only used to optionally specify STAGE behavior.
* destination file. Both files must have write access. from_off
* specifies the byte offset in the source, to_off is the byte offset in
* the destination, and len is the number of bytes in the region to
* move. All of the offsets and lengths must be in multiples of 4KB,
* except in the case where the from_off + len ends at the i_size of the
* source file.
*
* This interface only moves extents which are block granular, it does
* not perform RMW of sub-block byte extents and it does not overwrite
@@ -421,142 +435,33 @@ struct scoutfs_ioctl_alloc_detail_entry {
* i_size. The i_size update will maintain final partial blocks in the
* source.
*
* If STAGE flag is not set, it will return an error if either of the files
* have offline extents. It will return 0 when all of the extents in the
* source region have been moved to the destination. Moving extents updates
* the ctime, mtime, meta_seq, data_seq, and data_version fields of both the
* source and destination inodes. If an error is returned then partial
* It will return an error if either of the files have offline extents.
* It will return 0 when all of the extents in the source region have
* been moved to the destination. Moving extents updates the ctime,
* mtime, meta_seq, data_seq, and data_version fields of both the source
* and destination inodes. If an error is returned then partial
* progress may have been made and inode fields may have been updated.
*
* If STAGE flag is set, as above except destination range must be in an
* offline extent. Fields are updated only for source inode.
*
* Errors specific to this interface include:
*
* EINVAL: from_off, len, or to_off aren't a multiple of 4KB; the source
* and destination files are the same inode; either the source or
* destination is not a regular file; the destination file has
* an existing overlapping extent (if STAGE flag not set); the
* destination range is not in an offline extent (if STAGE set).
* an existing overlapping extent.
* EOVERFLOW: either from_off + len or to_off + len exceeded 64bits.
* EBADF: from_fd isn't a valid open file descriptor.
* EXDEV: the source and destination files are in different filesystems.
* EISDIR: either the source or destination is a directory.
* ENODATA: either the source or destination file have offline extents and
* STAGE flag is not set.
* ESTALE: data_version does not match destination data_version.
* ENODATA: either the source or destination file have offline extents.
*/
#define SCOUTFS_IOC_MB_STAGE (1 << 0)
#define SCOUTFS_IOC_MB_UNKNOWN (U64_MAX << 1)
struct scoutfs_ioctl_move_blocks {
__u64 from_fd;
__u64 from_off;
__u64 len;
__u64 to_off;
__u64 data_version;
__u64 flags;
};
#define SCOUTFS_IOC_MOVE_BLOCKS _IOW(SCOUTFS_IOCTL_MAGIC, 13, \
#define SCOUTFS_IOC_MOVE_BLOCKS _IOR(SCOUTFS_IOCTL_MAGIC, 13, \
struct scoutfs_ioctl_move_blocks)
struct scoutfs_ioctl_resize_devices {
__u64 new_total_meta_blocks;
__u64 new_total_data_blocks;
};
#define SCOUTFS_IOC_RESIZE_DEVICES \
_IOW(SCOUTFS_IOCTL_MAGIC, 14, struct scoutfs_ioctl_resize_devices)
#define SCOUTFS_IOCTL_XATTR_TOTAL_NAME_NR 3
/*
* Copy global totals of .totl. xattr value payloads to the user. This
* only sees xattrs which have been committed and this doesn't force
* commits of dirty data throughout the system. This can be out of sync
* by the amount of xattrs that can be dirty in open transactions that
* are being built throughout the system.
*
* pos_name: The array name of the first total that can be returned.
* The name is derived from the key of the xattrs that contribute to the
* total. For xattrs with a .totl.1.2.3 key, the pos_name[] should be
* {1, 2, 3}.
*
* totals_ptr: An aligned pointer to a buffer that will be filled with
* an array of scoutfs_ioctl_xattr_total structs for each total copied.
*
* totals_bytes: The size of the buffer in bytes. There must be room
* for at least one struct element so that returning 0 can promise that
* there were no more totals to copy after the pos_name.
*
* The number of copied elements is returned and 0 is returned if there
* were no more totals to copy after the pos_name.
*
* In addition to the usual errnos (EIO, EINVAL, EPERM, EFAULT) this
* adds:
*
* EINVAL: The totals_ buffer was not aligned or was not large enough
* for a single struct entry.
*/
struct scoutfs_ioctl_read_xattr_totals {
__u64 pos_name[SCOUTFS_IOCTL_XATTR_TOTAL_NAME_NR];
__u64 totals_ptr;
__u64 totals_bytes;
};
/*
* An individual total that is given to userspace. The total is the
* sum of all the values in the xattr payloads matching the name. The
* count is the number of xattrs, not number of files, contributing to
* the total.
*/
struct scoutfs_ioctl_xattr_total {
__u64 name[SCOUTFS_IOCTL_XATTR_TOTAL_NAME_NR];
__u64 total;
__u64 count;
};
#define SCOUTFS_IOC_READ_XATTR_TOTALS \
_IOW(SCOUTFS_IOCTL_MAGIC, 15, struct scoutfs_ioctl_read_xattr_totals)
/*
* This fills the caller's inos array with inode numbers that are in use
* after the start ino, within an internal inode group.
*
* This only makes a promise about the state of the inode numbers within
* the first and last numbers returned by one call. At one time, all of
* those inodes were still allocated. They could have changed before
* the call returned. And any numbers outside of the first and last
* (or single) are undefined.
*
* This doesn't iterate over all allocated inodes, it only probes a
* single group that the start inode is within. This interface was
* first introduced to support tests that needed to find out about a
* specific inode, while having some other similarly niche uses. It is
* unsuitable for a consistent iteration over all the inode numbers in
* use.
*
* This test of inode items doesn't serialize with the inode lifetime
* mechanism. It only tells you the numbers of inodes that were once
* active in the system and haven't yet been fully deleted. The inode
* numbers returned could have been in the process of being deleted and
* were already unreachable even before the call started.
*
* @start_ino: the first inode number that could be returned
* @inos_ptr: pointer to an aligned array of 64bit inode numbers
* @inos_bytes: the number of bytes available in the inos_ptr array
*
* Returns errors or the count of inode numbers returned, quite possibly
* including 0.
*/
struct scoutfs_ioctl_get_allocated_inos {
__u64 start_ino;
__u64 inos_ptr;
__u64 inos_bytes;
};
#define SCOUTFS_IOC_GET_ALLOCATED_INOS \
_IOW(SCOUTFS_IOCTL_MAGIC, 16, struct scoutfs_ioctl_get_allocated_inos)
#endif

View File

@@ -95,7 +95,7 @@ struct item_cache_info {
/* written by page readers, read by shrink */
spinlock_t active_lock;
struct list_head active_list;
struct rb_root active_root;
};
#define DECLARE_ITEM_CACHE_INFO(sb, name) \
@@ -127,7 +127,6 @@ struct cached_page {
unsigned long lru_time;
struct list_head dirty_list;
struct list_head dirty_head;
u64 max_seq;
struct page *page;
unsigned int page_off;
unsigned int erased_bytes;
@@ -139,11 +138,10 @@ struct cached_item {
struct list_head dirty_head;
unsigned int dirty:1, /* needs to be written */
persistent:1, /* in btrees, needs deletion item */
deletion:1, /* negative del item for writing */
delta:1; /* item vales are combined, freed after write */
deletion:1; /* negative del item for writing */
unsigned int val_len;
struct scoutfs_key key;
u64 seq;
struct scoutfs_log_item_value liv;
char val[0];
};
@@ -151,8 +149,7 @@ struct cached_item {
static int item_val_bytes(int val_len)
{
return round_up(offsetof(struct cached_item, val[val_len]),
CACHED_ITEM_ALIGN);
return round_up(offsetof(struct cached_item, val[val_len]), CACHED_ITEM_ALIGN);
}
/*
@@ -348,8 +345,7 @@ static struct cached_page *alloc_pg(struct super_block *sb, gfp_t gfp)
page = alloc_page(GFP_NOFS | gfp);
if (!page || !pg) {
kfree(pg);
if (page)
__free_page(page);
__free_page(page);
return NULL;
}
@@ -387,12 +383,6 @@ static void put_pg(struct super_block *sb, struct cached_page *pg)
}
}
static void update_pg_max_seq(struct cached_page *pg, struct cached_item *item)
{
if (item->seq > pg->max_seq)
pg->max_seq = item->seq;
}
/*
* Allocate space for a new item from the free offset at the end of a
* cached page. This isn't a blocking allocation, and it's likely that
@@ -400,7 +390,8 @@ static void update_pg_max_seq(struct cached_page *pg, struct cached_item *item)
* page or checking the free space first.
*/
static struct cached_item *alloc_item(struct cached_page *pg,
struct scoutfs_key *key, u64 seq, bool deletion,
struct scoutfs_key *key,
struct scoutfs_log_item_value *liv,
void *val, int val_len)
{
struct cached_item *item;
@@ -415,24 +406,22 @@ static struct cached_item *alloc_item(struct cached_page *pg,
INIT_LIST_HEAD(&item->dirty_head);
item->dirty = 0;
item->persistent = 0;
item->deletion = !!deletion;
item->delta = 0;
item->deletion = !!(liv->flags & SCOUTFS_LOG_ITEM_FLAG_DELETION);
item->val_len = val_len;
item->key = *key;
item->seq = seq;
item->liv = *liv;
if (val_len)
memcpy(item->val, val, val_len);
update_pg_max_seq(pg, item);
return item;
}
static void erase_item(struct cached_page *pg, struct cached_item *item)
{
rbtree_erase(&item->node, &pg->item_root);
pg->erased_bytes += item_val_bytes(item->val_len);
pg->erased_bytes += round_up(item_val_bytes(item->val_len),
CACHED_ITEM_ALIGN);
}
static void lru_add(struct super_block *sb, struct item_cache_info *cinf,
@@ -632,8 +621,6 @@ static void mark_item_dirty(struct super_block *sb,
list_add_tail(&item->dirty_head, &pg->dirty_list);
item->dirty = 1;
}
update_pg_max_seq(pg, item);
}
static void clear_item_dirty(struct super_block *sb,
@@ -685,12 +672,6 @@ static void erase_page_items(struct cached_page *pg,
* to the dirty list after the left page, and by adding items to the
* tail of right's dirty list in key sort order.
*
* The max_seq of the source page might be larger than all the items
* while protecting an erased item from being reclaimed while an older
* read is in flight. We don't know where it might be in the source
* page so we have to assume that it's in the key range being moved and
* update the destination page's max_seq accordingly.
*
* The caller is responsible for page locking and managing the lru.
*/
static void move_page_items(struct super_block *sb,
@@ -716,7 +697,7 @@ static void move_page_items(struct super_block *sb,
if (stop && scoutfs_key_compare(&from->key, stop) >= 0)
break;
to = alloc_item(right, &from->key, from->seq, from->deletion, from->val,
to = alloc_item(right, &from->key, &from->liv, from->val,
from->val_len);
rbtree_insert(&to->node, par, pnode, &right->item_root);
par = &to->node;
@@ -728,13 +709,10 @@ static void move_page_items(struct super_block *sb,
}
to->persistent = from->persistent;
to->delta = from->delta;
to->deletion = from->deletion;
erase_item(left, from);
}
if (left->max_seq > right->max_seq)
right->max_seq = left->max_seq;
}
enum page_intersection_type {
@@ -874,7 +852,8 @@ static void compact_page_items(struct super_block *sb,
for (from = first_item(&pg->item_root); from; from = next_item(from)) {
to = page_address(empty->page) + page_off;
page_off += item_val_bytes(from->val_len);
page_off += round_up(item_val_bytes(from->val_len),
CACHED_ITEM_ALIGN);
/* copy the entire item, struct members and all */
memcpy(to, from, item_val_bytes(from->val_len));
@@ -1281,76 +1260,46 @@ static int cache_empty_page(struct super_block *sb,
return 0;
}
/*
* Readers operate independently from dirty items and transactions.
* They read a set of persistent items and insert them into the cache
* when there aren't already pages whose key range contains the items.
* This naturally prefers cached dirty items over stale read items.
*
* We have to deal with the case where dirty items are written and
* invalidated while a read is in flight. The reader won't have seen
* the items that were dirty in their persistent roots as they started
* reading. By the time they insert their read pages the previously
* dirty items have been reclaimed and are not in the cache. The old
* stale items will be inserted in their place, effectively corrupting
* by having the dirty items disappear.
*
* We fix this by tracking the max seq of items in pages. As readers
* start they record the current transaction seq. Invalidation skips
* pages with a max seq greater than the first reader seq because the
* items in the page have to stick around to prevent the readers stale
* items from being inserted.
*
* This naturally only affects a small set of pages with items that were
* written relatively recently. If we're in memory pressure then we
* probably have a lot of pages and they'll naturally have items that
* were visible to any raders. We don't bother with the complicated and
* expensive further refinement of tracking the ranges that are being
* read and comparing those with pages to invalidate.
*/
struct active_reader {
struct list_head head;
u64 seq;
struct rb_node node;
struct scoutfs_key start;
struct scoutfs_key end;
};
#define INIT_ACTIVE_READER(rdr) \
struct active_reader rdr = { .head = LIST_HEAD_INIT(rdr.head) }
static void add_active_reader(struct super_block *sb, struct active_reader *active)
{
DECLARE_ITEM_CACHE_INFO(sb, cinf);
BUG_ON(!list_empty(&active->head));
active->seq = scoutfs_trans_sample_seq(sb);
spin_lock(&cinf->active_lock);
list_add_tail(&active->head, &cinf->active_list);
spin_unlock(&cinf->active_lock);
}
static u64 first_active_reader_seq(struct item_cache_info *cinf)
static struct active_reader *active_rbtree_walk(struct rb_root *root,
struct scoutfs_key *start,
struct scoutfs_key *end,
struct rb_node **par,
struct rb_node ***pnode)
{
struct rb_node **node = &root->rb_node;
struct rb_node *parent = NULL;
struct active_reader *ret = NULL;
struct active_reader *active;
u64 first;
int cmp;
/* only the calling task adds or deletes this active */
spin_lock(&cinf->active_lock);
active = list_first_entry_or_null(&cinf->active_list, struct active_reader, head);
first = active ? active->seq : U64_MAX;
spin_unlock(&cinf->active_lock);
while (*node) {
parent = *node;
active = container_of(*node, struct active_reader, node);
return first;
}
static void del_active_reader(struct item_cache_info *cinf, struct active_reader *active)
{
/* only the calling task adds or deletes this active */
if (!list_empty(&active->head)) {
spin_lock(&cinf->active_lock);
list_del_init(&active->head);
spin_unlock(&cinf->active_lock);
cmp = scoutfs_key_compare_ranges(start, end, &active->start,
&active->end);
if (cmp < 0) {
node = &(*node)->rb_left;
} else if (cmp > 0) {
node = &(*node)->rb_right;
} else {
ret = active;
node = &(*node)->rb_left;
}
}
if (par)
*par = parent;
if (pnode)
*pnode = node;
return ret;
}
/*
@@ -1359,16 +1308,16 @@ static void del_active_reader(struct item_cache_info *cinf, struct active_reader
* on our root and aren't in dirty or lru lists.
*
* We need to store deletion items here as we read items from all the
* btrees so that they can override older items. The deletion items
* will be deleted before we insert the pages into the cache. We don't
* insert old versions of items into the tree here so that the trees
* don't have to compare seqs.
* btrees so that they can override older versions of the items. The
* deletion items will be deleted before we insert the pages into the
* cache. We don't insert old versions of items into the tree here so
* that the trees don't have to compare versions.
*/
static int read_page_item(struct super_block *sb, struct scoutfs_key *key, u64 seq, u8 flags,
void *val, int val_len, int fic, void *arg)
static int read_page_item(struct super_block *sb, struct scoutfs_key *key,
struct scoutfs_log_item_value *liv, void *val,
int val_len, void *arg)
{
DECLARE_ITEM_CACHE_INFO(sb, cinf);
const bool deletion = !!(flags & SCOUTFS_ITEM_FLAG_DELETION);
struct rb_root *root = arg;
struct cached_page *right = NULL;
struct cached_page *left = NULL;
@@ -1382,7 +1331,7 @@ static int read_page_item(struct super_block *sb, struct scoutfs_key *key, u64 s
pg = page_rbtree_walk(sb, root, key, key, NULL, NULL, &p_par, &p_pnode);
found = item_rbtree_walk(&pg->item_root, key, NULL, &par, &pnode);
if (found && (found->seq >= seq))
if (found && (le64_to_cpu(found->liv.vers) >= le64_to_cpu(liv->vers)))
return 0;
if (!page_has_room(pg, val_len)) {
@@ -1390,13 +1339,10 @@ static int read_page_item(struct super_block *sb, struct scoutfs_key *key, u64 s
/* split needs multiple items, sparse may not have enough */
if (!left)
return -ENOMEM;
compact_page_items(sb, pg, left);
found = item_rbtree_walk(&pg->item_root, key, NULL, &par,
&pnode);
}
item = alloc_item(pg, key, seq, deletion, val, val_len);
item = alloc_item(pg, key, liv, val, val_len);
if (!item) {
/* simpler split of private pages, no locking/dirty/lru */
if (!left)
@@ -1419,7 +1365,7 @@ static int read_page_item(struct super_block *sb, struct scoutfs_key *key, u64 s
put_pg(sb, pg);
pg = scoutfs_key_compare(key, &left->end) <= 0 ? left : right;
item = alloc_item(pg, key, seq, deletion, val, val_len);
item = alloc_item(pg, key, liv, val, val_len);
found = item_rbtree_walk(&pg->item_root, key, NULL, &par,
&pnode);
@@ -1450,20 +1396,22 @@ static int read_page_item(struct super_block *sb, struct scoutfs_key *key, u64 s
* locks held, but without locking the cache. The regions we read can
* be stale with respect to the current cache, which can be read and
* dirtied by other cluster lock holders on our node, but the cluster
* locks protect the stable items we read. Invalidation is careful not
* to drop pages that have items that we couldn't see because they were
* dirty when we started reading.
* locks protect the stable items we read.
*
* The forest item reader is reading stable trees that could be
* overwritten. It can return -ESTALE which we return to the caller who
* will retry the operation and work with a new set of more recent
* btrees.
* There's also the exciting case where a reader can populate the cache
* with stale old persistent data which was read before another local
* cluster lock holder was able to read, dirty, write, and then shrink
* the cache. In this case the cache couldn't be cleared by lock
* invalidation because the caller is actively holding the lock. But
* shrinking could evict the cache within the held lock. So we record
* that we're an active reader in the range covered by the lock and
* shrink will refuse to reclaim any pages that intersect with our read.
*/
static int read_pages(struct super_block *sb, struct item_cache_info *cinf,
struct scoutfs_key *key, struct scoutfs_lock *lock)
{
struct rb_root root = RB_ROOT;
INIT_ACTIVE_READER(active);
struct active_reader active;
struct cached_page *right = NULL;
struct cached_page *pg;
struct cached_page *rd;
@@ -1479,6 +1427,15 @@ static int read_pages(struct super_block *sb, struct item_cache_info *cinf,
int pgi;
int ret;
/* stop shrink from freeing new clean data, would let us cache stale */
active.start = lock->start;
active.end = lock->end;
spin_lock(&cinf->active_lock);
active_rbtree_walk(&cinf->active_root, &active.start, &active.end,
&par, &pnode);
rbtree_insert(&active.node, par, pnode, &cinf->active_root);
spin_unlock(&cinf->active_lock);
/* start with an empty page that covers the whole lock */
pg = alloc_pg(sb, 0);
if (!pg) {
@@ -1489,12 +1446,8 @@ static int read_pages(struct super_block *sb, struct item_cache_info *cinf,
pg->end = lock->end;
rbtree_insert(&pg->node, NULL, &root.rb_node, &root);
/* set active reader seq before reading persistent roots */
add_active_reader(sb, &active);
start = lock->start;
end = lock->end;
ret = scoutfs_forest_read_items(sb, key, &lock->start, &start, &end, read_page_item, &root);
ret = scoutfs_forest_read_items(sb, lock, key, &start, &end,
read_page_item, &root);
if (ret < 0)
goto out;
@@ -1538,8 +1491,6 @@ retry:
rbtree_erase(&rd->node, &root);
rbtree_insert(&rd->node, par, pnode, &cinf->pg_root);
lru_accessed(sb, cinf, rd);
trace_scoutfs_item_read_page(sb, key, &rd->start,
&rd->end);
continue;
}
@@ -1570,7 +1521,9 @@ retry:
ret = 0;
out:
del_active_reader(cinf, &active);
spin_lock(&cinf->active_lock);
rbtree_erase(&active.node, &cinf->active_root);
spin_unlock(&cinf->active_lock);
/* free any pages we left dangling on error */
for_each_page_safe(&root, rd, pg_tmp) {
@@ -1629,7 +1582,7 @@ retry:
&lock->end);
else
ret = read_pages(sb, cinf, key, lock);
if (ret < 0 && ret != -ESTALE)
if (ret < 0)
goto out;
goto retry;
}
@@ -1676,14 +1629,6 @@ static int lock_safe(struct scoutfs_lock *lock, struct scoutfs_key *key,
return 0;
}
static int optional_lock_mode_match(struct scoutfs_lock *lock, int mode)
{
if (WARN_ON_ONCE(lock && lock->mode != mode))
return -EINVAL;
else
return 0;
}
/*
* Copy the cached item's value into the caller's value. The number of
* bytes copied is returned. A null val returns 0.
@@ -1833,28 +1778,6 @@ out:
return ret;
}
/*
* An item's seq is greater of the client transaction's seq and the
* lock's write_seq. This ensures that multiple commits in one lock
* grant will have increasing seqs, and new locks in open commits will
* also increase the seqs. It lets us limit the inputs of item merging
* to the last stable seq and ensure that all the items in open
* transactions and granted locks will have greater seqs.
*
* This is a little awkward for WRITE_ONLY locks which can have much
* older versions than the version of locked primary data that they're
* operating on behalf of. Callers can optionally provide that primary
* lock to get the version from. This ensures that items created under
* WRITE_ONLY locks can not have versions less than their primary data.
*/
static u64 item_seq(struct super_block *sb, struct scoutfs_lock *lock,
struct scoutfs_lock *primary)
{
struct scoutfs_sb_info *sbi = SCOUTFS_SB(sb);
return max3(sbi->trans_seq, lock->write_seq, primary ? primary->write_seq : 0);
}
/*
* Mark the item dirty. Dirtying while holding a transaction pins the
* page holding the item and guarantees that the item can be deleted or
@@ -1887,8 +1810,8 @@ int scoutfs_item_dirty(struct super_block *sb, struct scoutfs_key *key,
if (!item || item->deletion) {
ret = -ENOENT;
} else {
item->seq = item_seq(sb, lock, NULL);
mark_item_dirty(sb, cinf, pg, NULL, item);
item->liv.vers = cpu_to_le64(lock->write_version);
ret = 0;
}
@@ -1904,10 +1827,12 @@ out:
*/
static int item_create(struct super_block *sb, struct scoutfs_key *key,
void *val, int val_len, struct scoutfs_lock *lock,
struct scoutfs_lock *primary, int mode, bool force)
int mode, bool force)
{
DECLARE_ITEM_CACHE_INFO(sb, cinf);
const u64 seq = item_seq(sb, lock, primary);
struct scoutfs_log_item_value liv = {
.vers = cpu_to_le64(lock->write_version),
};
struct cached_item *found;
struct cached_item *item;
struct cached_page *pg;
@@ -1917,8 +1842,7 @@ static int item_create(struct super_block *sb, struct scoutfs_key *key,
scoutfs_inc_counter(sb, item_create);
if ((ret = lock_safe(lock, key, mode)) ||
(ret = optional_lock_mode_match(primary, SCOUTFS_LOCK_WRITE)))
if ((ret = lock_safe(lock, key, mode)))
goto out;
ret = scoutfs_forest_set_bloom_bits(sb, lock);
@@ -1936,7 +1860,7 @@ static int item_create(struct super_block *sb, struct scoutfs_key *key,
goto unlock;
}
item = alloc_item(pg, key, seq, false, val, val_len);
item = alloc_item(pg, key, &liv, val, val_len);
rbtree_insert(&item->node, par, pnode, &pg->item_root);
mark_item_dirty(sb, cinf, pg, NULL, item);
@@ -1959,15 +1883,15 @@ out:
int scoutfs_item_create(struct super_block *sb, struct scoutfs_key *key,
void *val, int val_len, struct scoutfs_lock *lock)
{
return item_create(sb, key, val, val_len, lock, NULL,
return item_create(sb, key, val, val_len, lock,
SCOUTFS_LOCK_READ, false);
}
int scoutfs_item_create_force(struct super_block *sb, struct scoutfs_key *key,
void *val, int val_len,
struct scoutfs_lock *lock, struct scoutfs_lock *primary)
struct scoutfs_lock *lock)
{
return item_create(sb, key, val, val_len, lock, primary,
return item_create(sb, key, val, val_len, lock,
SCOUTFS_LOCK_WRITE_ONLY, true);
}
@@ -1981,7 +1905,9 @@ int scoutfs_item_update(struct super_block *sb, struct scoutfs_key *key,
void *val, int val_len, struct scoutfs_lock *lock)
{
DECLARE_ITEM_CACHE_INFO(sb, cinf);
const u64 seq = item_seq(sb, lock, NULL);
struct scoutfs_log_item_value liv = {
.vers = cpu_to_le64(lock->write_version),
};
struct cached_item *item;
struct cached_item *found;
struct cached_page *pg;
@@ -2013,13 +1939,12 @@ int scoutfs_item_update(struct super_block *sb, struct scoutfs_key *key,
if (val_len)
memcpy(found->val, val, val_len);
if (val_len < found->val_len)
pg->erased_bytes += item_val_bytes(found->val_len) -
item_val_bytes(val_len);
pg->erased_bytes += found->val_len - val_len;
found->val_len = val_len;
found->seq = seq;
found->liv.vers = liv.vers;
mark_item_dirty(sb, cinf, pg, NULL, found);
} else {
item = alloc_item(pg, key, seq, false, val, val_len);
item = alloc_item(pg, key, &liv, val, val_len);
item->persistent = found->persistent;
rbtree_insert(&item->node, par, pnode, &pg->item_root);
mark_item_dirty(sb, cinf, pg, NULL, item);
@@ -2035,81 +1960,6 @@ out:
return ret;
}
/*
* Add a delta item. Delta items are an incremental change relative to
* the current persistent delta items. We never have to read the
* current items so the caller always writes with write only locks. If
* combining the current delta item and the caller's item results in a
* null we can just drop it, we don't have to emit a deletion item.
*
* Delta items don't have to worry about creating items with old
* versions under write_only locks. The versions don't impact how we
* merge two items.
*/
int scoutfs_item_delta(struct super_block *sb, struct scoutfs_key *key,
void *val, int val_len, struct scoutfs_lock *lock)
{
DECLARE_ITEM_CACHE_INFO(sb, cinf);
const u64 seq = item_seq(sb, lock, NULL);
struct cached_item *item;
struct cached_page *pg;
struct rb_node **pnode;
struct rb_node *par;
int ret;
scoutfs_inc_counter(sb, item_delta);
if ((ret = lock_safe(lock, key, SCOUTFS_LOCK_WRITE_ONLY)))
goto out;
ret = scoutfs_forest_set_bloom_bits(sb, lock);
if (ret < 0)
goto out;
ret = get_cached_page(sb, cinf, lock, key, true, true, val_len, &pg);
if (ret < 0)
goto out;
__acquire(pg->rwlock);
item = item_rbtree_walk(&pg->item_root, key, NULL, &par, &pnode);
if (item) {
if (!item->delta) {
ret = -EIO;
goto unlock;
}
ret = scoutfs_forest_combine_deltas(key, item->val, item->val_len, val, val_len);
if (ret <= 0) {
if (ret == 0)
ret = -EIO;
goto unlock;
}
if (ret == SCOUTFS_DELTA_COMBINED) {
item->seq = seq;
mark_item_dirty(sb, cinf, pg, NULL, item);
} else if (ret == SCOUTFS_DELTA_COMBINED_NULL) {
clear_item_dirty(sb, cinf, pg, item);
erase_item(pg, item);
} else {
ret = -EIO;
goto unlock;
}
ret = 0;
} else {
item = alloc_item(pg, key, seq, false, val, val_len);
rbtree_insert(&item->node, par, pnode, &pg->item_root);
mark_item_dirty(sb, cinf, pg, NULL, item);
item->delta = 1;
ret = 0;
}
unlock:
write_unlock(&pg->rwlock);
out:
return ret;
}
/*
* Delete an item from the cache. We can leave behind a dirty deletion
* item if there is a persistent item that needs to be overwritten.
@@ -2119,11 +1969,12 @@ out:
* deletion item if there isn't one already cached.
*/
static int item_delete(struct super_block *sb, struct scoutfs_key *key,
struct scoutfs_lock *lock, struct scoutfs_lock *primary,
int mode, bool force)
struct scoutfs_lock *lock, int mode, bool force)
{
DECLARE_ITEM_CACHE_INFO(sb, cinf);
const u64 seq = item_seq(sb, lock, primary);
struct scoutfs_log_item_value liv = {
.vers = cpu_to_le64(lock->write_version),
};
struct cached_item *item;
struct cached_page *pg;
struct rb_node **pnode;
@@ -2132,8 +1983,7 @@ static int item_delete(struct super_block *sb, struct scoutfs_key *key,
scoutfs_inc_counter(sb, item_delete);
if ((ret = lock_safe(lock, key, mode)) ||
(ret = optional_lock_mode_match(primary, SCOUTFS_LOCK_WRITE)))
if ((ret = lock_safe(lock, key, mode)))
goto out;
ret = scoutfs_forest_set_bloom_bits(sb, lock);
@@ -2152,7 +2002,7 @@ static int item_delete(struct super_block *sb, struct scoutfs_key *key,
}
if (!item) {
item = alloc_item(pg, key, seq, false, NULL, 0);
item = alloc_item(pg, key, &liv, NULL, 0);
rbtree_insert(&item->node, par, pnode, &pg->item_root);
}
@@ -2165,10 +2015,10 @@ static int item_delete(struct super_block *sb, struct scoutfs_key *key,
erase_item(pg, item);
} else {
/* must emit deletion to clobber old persistent item */
item->seq = seq;
item->liv.vers = cpu_to_le64(lock->write_version);
item->liv.flags |= SCOUTFS_LOG_ITEM_FLAG_DELETION;
item->deletion = 1;
pg->erased_bytes += item_val_bytes(item->val_len) -
item_val_bytes(0);
pg->erased_bytes += item->val_len;
item->val_len = 0;
mark_item_dirty(sb, cinf, pg, NULL, item);
}
@@ -2183,13 +2033,13 @@ out:
int scoutfs_item_delete(struct super_block *sb, struct scoutfs_key *key,
struct scoutfs_lock *lock)
{
return item_delete(sb, key, lock, NULL, SCOUTFS_LOCK_WRITE, false);
return item_delete(sb, key, lock, SCOUTFS_LOCK_WRITE, false);
}
int scoutfs_item_delete_force(struct super_block *sb, struct scoutfs_key *key,
struct scoutfs_lock *lock, struct scoutfs_lock *primary)
struct scoutfs_lock *lock)
{
return item_delete(sb, key, lock, primary, SCOUTFS_LOCK_WRITE_ONLY, true);
return item_delete(sb, key, lock, SCOUTFS_LOCK_WRITE_ONLY, true);
}
u64 scoutfs_item_dirty_pages(struct super_block *sb)
@@ -2251,11 +2101,17 @@ int scoutfs_item_write_dirty(struct super_block *sb)
struct page *page;
LIST_HEAD(pages);
LIST_HEAD(pos);
u64 max_seq = 0;
u64 max_vers = 0;
int val_len;
int bytes;
int off;
int ret;
/* we're relying on struct layout to prepend item value headers */
BUILD_BUG_ON(offsetof(struct cached_item, val) !=
(offsetof(struct cached_item, liv) +
member_sizeof(struct cached_item, liv)));
if (atomic_read(&cinf->dirty_pages) == 0)
return 0;
@@ -2307,9 +2163,10 @@ int scoutfs_item_write_dirty(struct super_block *sb)
list_sort(NULL, &pg->dirty_list, cmp_item_key);
list_for_each_entry(item, &pg->dirty_list, dirty_head) {
val_len = sizeof(item->liv) + item->val_len;
bytes = offsetof(struct scoutfs_btree_item_list,
val[item->val_len]);
max_seq = max(max_seq, item->seq);
val[val_len]);
max_vers = max(max_vers, le64_to_cpu(item->liv.vers));
if (off + bytes > PAGE_SIZE) {
page = second;
@@ -2325,10 +2182,8 @@ int scoutfs_item_write_dirty(struct super_block *sb)
prev = &lst->next;
lst->key = item->key;
lst->seq = item->seq;
lst->flags = item->deletion ? SCOUTFS_ITEM_FLAG_DELETION : 0;
lst->val_len = item->val_len;
memcpy(lst->val, item->val, item->val_len);
lst->val_len = val_len;
memcpy(lst->val, &item->liv, val_len);
}
spin_lock(&cinf->dirty_lock);
@@ -2341,8 +2196,8 @@ int scoutfs_item_write_dirty(struct super_block *sb)
read_unlock(&pg->rwlock);
}
/* store max item seq in forest's log_trees */
scoutfs_forest_set_max_seq(sb, max_seq);
/* store max item vers in forest's log_trees */
scoutfs_forest_set_max_vers(sb, max_vers);
/* write all the dirty items into log btree blocks */
ret = scoutfs_forest_insert_list(sb, first);
@@ -2386,11 +2241,8 @@ retry:
dirty_head) {
clear_item_dirty(sb, cinf, pg, item);
if (item->delta)
scoutfs_inc_counter(sb, item_delta_written);
/* free deletion items */
if (item->deletion || item->delta)
if (item->deletion)
erase_item(pg, item);
else
item->persistent = 1;
@@ -2490,8 +2342,6 @@ retry:
write_lock(&pg->rwlock);
pgi = trim_page_intersection(sb, cinf, pg, right, start, end);
trace_scoutfs_item_invalidate_page(sb, start, end,
&pg->start, &pg->end, pgi);
BUG_ON(pgi == PGI_DISJOINT); /* walk wouldn't ret disjoint */
if (pgi == PGI_INSIDE) {
@@ -2514,9 +2364,9 @@ retry:
/* inv was entirely inside page, done after bisect */
write_trylock_will_succeed(&right->rwlock);
rbtree_insert(&right->node, par, pnode, &cinf->pg_root);
lru_accessed(sb, cinf, right);
write_unlock(&right->rwlock);
write_unlock(&pg->rwlock);
lru_accessed(sb, cinf, right);
right = NULL;
break;
}
@@ -2532,9 +2382,9 @@ retry:
/*
* Shrink the size the item cache. We're operating against the fast
* path lock ordering and we skip pages if we can't acquire locks. We
* can run into dirty pages or pages with items that weren't visible to
* the earliest active reader which must be skipped.
* path lock ordering and we skip pages if we can't acquire locks.
* Similarly, we can run into dirty pages or pages which intersect with
* active readers that we can't shrink and also choose to skip.
*/
static int item_lru_shrink(struct shrinker *shrink,
struct shrink_control *sc)
@@ -2543,24 +2393,27 @@ static int item_lru_shrink(struct shrinker *shrink,
struct item_cache_info,
shrinker);
struct super_block *sb = cinf->sb;
struct active_reader *active;
struct cached_page *tmp;
struct cached_page *pg;
u64 first_reader_seq;
LIST_HEAD(list);
int nr;
if (sc->nr_to_scan == 0)
goto out;
nr = sc->nr_to_scan;
/* can't invalidate pages with items that weren't visible to first reader */
first_reader_seq = first_active_reader_seq(cinf);
write_lock(&cinf->rwlock);
spin_lock(&cinf->lru_lock);
list_for_each_entry_safe(pg, tmp, &cinf->lru_list, lru_head) {
if (first_reader_seq <= pg->max_seq) {
/* can't invalidate ranges being read, reader might be stale */
spin_lock(&cinf->active_lock);
active = active_rbtree_walk(&cinf->active_root, &pg->start,
&pg->end, NULL, NULL);
spin_unlock(&cinf->active_lock);
if (active) {
scoutfs_inc_counter(sb, item_shrink_page_reader);
continue;
}
@@ -2580,17 +2433,21 @@ static int item_lru_shrink(struct shrinker *shrink,
__lru_remove(sb, cinf, pg);
rbtree_erase(&pg->node, &cinf->pg_root);
list_move_tail(&pg->lru_head, &list);
invalidate_pcpu_page(pg);
write_unlock(&pg->rwlock);
put_pg(sb, pg);
if (--nr == 0)
break;
}
write_unlock(&cinf->rwlock);
spin_unlock(&cinf->lru_lock);
list_for_each_entry_safe(pg, tmp, &list, lru_head) {
list_del_init(&pg->lru_head);
put_pg(sb, pg);
}
out:
return min_t(unsigned long, cinf->lru_pages, INT_MAX);
}
@@ -2629,7 +2486,7 @@ int scoutfs_item_setup(struct super_block *sb)
spin_lock_init(&cinf->lru_lock);
INIT_LIST_HEAD(&cinf->lru_list);
spin_lock_init(&cinf->active_lock);
INIT_LIST_HEAD(&cinf->active_list);
cinf->active_root = RB_ROOT;
cinf->pcpu_pages = alloc_percpu(struct item_percpu_pages);
if (!cinf->pcpu_pages)
@@ -2660,7 +2517,7 @@ void scoutfs_item_destroy(struct super_block *sb)
int cpu;
if (cinf) {
BUG_ON(!list_empty(&cinf->active_list));
BUG_ON(!RB_EMPTY_ROOT(&cinf->active_root));
unregister_hotcpu_notifier(&cinf->notifier);
unregister_shrinker(&cinf->shrinker);

View File

@@ -15,15 +15,14 @@ int scoutfs_item_create(struct super_block *sb, struct scoutfs_key *key,
void *val, int val_len, struct scoutfs_lock *lock);
int scoutfs_item_create_force(struct super_block *sb, struct scoutfs_key *key,
void *val, int val_len,
struct scoutfs_lock *lock, struct scoutfs_lock *primary);
struct scoutfs_lock *lock);
int scoutfs_item_update(struct super_block *sb, struct scoutfs_key *key,
void *val, int val_len, struct scoutfs_lock *lock);
int scoutfs_item_delta(struct super_block *sb, struct scoutfs_key *key,
void *val, int val_len, struct scoutfs_lock *lock);
int scoutfs_item_delete(struct super_block *sb, struct scoutfs_key *key,
struct scoutfs_lock *lock);
int scoutfs_item_delete_force(struct super_block *sb, struct scoutfs_key *key,
struct scoutfs_lock *lock, struct scoutfs_lock *primary);
int scoutfs_item_delete_force(struct super_block *sb,
struct scoutfs_key *key,
struct scoutfs_lock *lock);
u64 scoutfs_item_dirty_pages(struct super_block *sb);
int scoutfs_item_write_dirty(struct super_block *sb);

View File

@@ -46,10 +46,4 @@ static inline int dir_emit_dots(struct file *file, void *dirent,
}
#endif
#ifdef KC_POSIX_ACL_VALID_USER_NS
#define kc_posix_acl_valid(user_ns, acl) posix_acl_valid(user_ns, acl)
#else
#define kc_posix_acl_valid(user_ns, acl) posix_acl_valid(acl)
#endif
#endif

View File

@@ -108,16 +108,6 @@ static inline void scoutfs_key_set_ones(struct scoutfs_key *key)
memset(key->__pad, 0, sizeof(key->__pad));
}
static inline bool scoutfs_key_is_ones(struct scoutfs_key *key)
{
return key->sk_zone == U8_MAX &&
key->_sk_first == cpu_to_le64(U64_MAX) &&
key->sk_type == U8_MAX &&
key->_sk_second == cpu_to_le64(U64_MAX) &&
key->_sk_third == cpu_to_le64(U64_MAX) &&
key->_sk_fourth == U8_MAX;
}
/*
* Return a -1/0/1 comparison of keys.
*

View File

@@ -18,7 +18,6 @@
#include <linux/mm.h>
#include <linux/sort.h>
#include <linux/ctype.h>
#include <linux/posix_acl.h>
#include "super.h"
#include "lock.h"
@@ -35,7 +34,6 @@
#include "data.h"
#include "xattr.h"
#include "item.h"
#include "omap.h"
/*
* scoutfs uses a lock service to manage item cache consistency between
@@ -67,6 +65,8 @@
* relative to that lock state we resend.
*/
#define GRACE_PERIOD_KT ms_to_ktime(2)
/*
* allocated per-super, freed on unmount.
*/
@@ -74,19 +74,19 @@ struct lock_info {
struct super_block *sb;
spinlock_t lock;
bool shutdown;
bool unmounting;
struct rb_root lock_tree;
struct rb_root lock_range_tree;
struct shrinker shrinker;
struct list_head lru_list;
unsigned long long lru_nr;
struct workqueue_struct *workq;
struct work_struct inv_work;
struct work_struct grant_work;
struct list_head grant_list;
struct delayed_work inv_dwork;
struct list_head inv_list;
struct work_struct shrink_work;
struct list_head shrink_list;
atomic64_t next_refresh_gen;
struct dentry *tseq_dentry;
struct scoutfs_tseq_tree tseq_tree;
};
@@ -122,37 +122,21 @@ static bool lock_modes_match(int granted, int requested)
}
/*
* Invalidate cached data associated with an inode whose lock is going
* invalidate cached data associated with an inode whose lock is going
* away.
*
* We try to drop cached dentries and inodes covered by the lock if they
* aren't referenced. This removes them from the mount's open map and
* allows deletions to be performed by unlink without having to wait for
* remote cached inodes to be dropped.
*
* We kick the d_prune and iput off to async work because they can end
* up in final iput and inode eviction item deletion which would
* deadlock. d_prune->dput can end up in iput on parents in different
* locks entirely.
*/
static void invalidate_inode(struct super_block *sb, u64 ino)
{
struct scoutfs_inode_info *si;
struct inode *inode;
inode = scoutfs_ilookup_nowait_nonewfree(sb, ino);
inode = scoutfs_ilookup(sb, ino);
if (inode) {
si = SCOUTFS_I(inode);
scoutfs_inc_counter(sb, lock_invalidate_inode);
if (S_ISREG(inode->i_mode)) {
truncate_inode_pages(inode->i_mapping, 0);
scoutfs_data_wait_changed(inode);
}
forget_all_cached_acls(inode);
scoutfs_inode_queue_iput(inode, SI_IPUT_FLAG_PRUNE);
iput(inode);
}
}
@@ -203,7 +187,6 @@ retry:
}
spin_unlock(&lock->cov_list_lock);
/* invalidate inodes after removing coverage so drop/evict aren't covered */
if (lock->start.sk_zone == SCOUTFS_FS_ZONE) {
ino = le64_to_cpu(lock->start.ski_ino);
last = le64_to_cpu(lock->end.ski_ino);
@@ -241,11 +224,11 @@ static void lock_free(struct lock_info *linfo, struct scoutfs_lock *lock)
BUG_ON(!RB_EMPTY_NODE(&lock->node));
BUG_ON(!RB_EMPTY_NODE(&lock->range_node));
BUG_ON(!list_empty(&lock->lru_head));
BUG_ON(!list_empty(&lock->grant_head));
BUG_ON(!list_empty(&lock->inv_head));
BUG_ON(!list_empty(&lock->shrink_head));
BUG_ON(!list_empty(&lock->cov_list));
kfree(lock->inode_deletion_data);
kfree(lock);
}
@@ -268,8 +251,8 @@ static struct scoutfs_lock *lock_alloc(struct super_block *sb,
RB_CLEAR_NODE(&lock->node);
RB_CLEAR_NODE(&lock->range_node);
INIT_LIST_HEAD(&lock->lru_head);
INIT_LIST_HEAD(&lock->grant_head);
INIT_LIST_HEAD(&lock->inv_head);
INIT_LIST_HEAD(&lock->inv_list);
INIT_LIST_HEAD(&lock->shrink_head);
spin_lock_init(&lock->cov_list_lock);
INIT_LIST_HEAD(&lock->cov_list);
@@ -279,7 +262,6 @@ static struct scoutfs_lock *lock_alloc(struct super_block *sb,
lock->sb = sb;
init_waitqueue_head(&lock->waitq);
lock->mode = SCOUTFS_LOCK_NULL;
lock->invalidating_mode = SCOUTFS_LOCK_NULL;
atomic64_set(&lock->forest_bloom_nr, 0);
@@ -316,6 +298,23 @@ static bool lock_counts_match(int granted, unsigned int *counts)
return true;
}
/*
* Returns true if there are any mode counts that match with the desired
* mode. There can be other non-matching counts as well but we're only
* testing for the existence of any matching counts.
*/
static bool lock_count_match_exists(int desired, unsigned int *counts)
{
enum scoutfs_lock_mode mode;
for (mode = 0; mode < SCOUTFS_LOCK_NR_MODES; mode++) {
if (counts[mode] && lock_modes_match(desired, mode))
return true;
}
return false;
}
/*
* An idle lock has nothing going on. It can be present in the lru and
* can be freed by the final put when it has a null mode.
@@ -533,15 +532,45 @@ static void put_lock(struct lock_info *linfo,struct scoutfs_lock *lock)
}
/*
* The caller has made a change (set a lock mode) which can let one of the
* invalidating locks make forward progress.
* Locks have a grace period that extends after activity and prevents
* invalidation. It's intended to let nodes do reasonable batches of
* work as locks ping pong between nodes that are doing conflicting
* work.
*/
static void extend_grace(struct super_block *sb, struct scoutfs_lock *lock)
{
ktime_t now = ktime_get();
if (ktime_after(now, lock->grace_deadline))
scoutfs_inc_counter(sb, lock_grace_set);
else
scoutfs_inc_counter(sb, lock_grace_extended);
lock->grace_deadline = ktime_add(now, GRACE_PERIOD_KT);
}
static void queue_grant_work(struct lock_info *linfo)
{
assert_spin_locked(&linfo->lock);
if (!list_empty(&linfo->grant_list) && !linfo->shutdown)
queue_work(linfo->workq, &linfo->grant_work);
}
/*
* We immediately queue work on the assumption that the caller might
* have made a change (set a lock mode) which can let one of the
* invalidating locks make forward progress, even if other locks are
* waiting for their grace period to elapse. It's a trade-off between
* invalidation latency and burning cpu repeatedly finding that locks
* are still in their grace period.
*/
static void queue_inv_work(struct lock_info *linfo)
{
assert_spin_locked(&linfo->lock);
if (!list_empty(&linfo->inv_list))
queue_work(linfo->workq, &linfo->inv_work);
if (!list_empty(&linfo->inv_list) && !linfo->shutdown)
mod_delayed_work(linfo->workq, &linfo->inv_dwork, 0);
}
/*
@@ -589,17 +618,80 @@ static void bug_on_inconsistent_grant_cache(struct super_block *sb,
}
/*
* The client is receiving a grant response message from the server.
* This is being called synchronously in the networking receive path so
* our work should be quick and reasonably non-blocking.
* Each lock has received a grant response message from the server.
*
* The server's state machine can immediately send an invalidate request
* after sending this grant response. We won't process the incoming
* invalidate request until after processing this grant response.
* Grant responses can be reordered with incoming invalidation requests
* from the server so we have to be careful to only set the new mode
* once the old mode matches.
*
* We extend the grace period as we grant the lock if there is a waiting
* locker who can use the lock. This stops invalidation from pulling
* the granted lock out from under the requester, resulting in a lot of
* churn with no forward progress. Using the grace period avoids having
* to identify a specific waiter and give it an acquired lock. It's
* also very similar to waking up the locker and having it win the race
* against the invalidation. In that case they'd extend the grace
* period anyway as they unlock.
*/
static void lock_grant_worker(struct work_struct *work)
{
struct lock_info *linfo = container_of(work, struct lock_info,
grant_work);
struct super_block *sb = linfo->sb;
struct scoutfs_net_lock_grant_response *gr;
struct scoutfs_net_lock *nl;
struct scoutfs_lock *lock;
struct scoutfs_lock *tmp;
scoutfs_inc_counter(sb, lock_grant_work);
spin_lock(&linfo->lock);
list_for_each_entry_safe(lock, tmp, &linfo->grant_list, grant_head) {
gr = &lock->grant_resp;
nl = &lock->grant_resp.nl;
/* wait for reordered invalidation to finish */
if (lock->mode != nl->old_mode)
continue;
bug_on_inconsistent_grant_cache(sb, lock, nl->old_mode,
nl->new_mode);
if (!lock_mode_can_read(nl->old_mode) &&
lock_mode_can_read(nl->new_mode)) {
lock->refresh_gen =
atomic64_inc_return(&linfo->next_refresh_gen);
}
lock->request_pending = 0;
lock->mode = nl->new_mode;
lock->write_version = le64_to_cpu(nl->write_version);
lock->roots = gr->roots;
if (lock_count_match_exists(nl->new_mode, lock->waiters))
extend_grace(sb, lock);
trace_scoutfs_lock_granted(sb, lock);
list_del_init(&lock->grant_head);
wake_up(&lock->waitq);
put_lock(linfo, lock);
}
/* invalidations might be waiting for our reordered grant */
queue_inv_work(linfo);
spin_unlock(&linfo->lock);
}
/*
* The client is receiving a grant response message from the server. We
* find the lock, record the response, and add it to the list for grant
* work to process.
*/
int scoutfs_lock_grant_response(struct super_block *sb,
struct scoutfs_net_lock *nl)
struct scoutfs_net_lock_grant_response *gr)
{
struct scoutfs_net_lock *nl = &gr->nl;
DECLARE_LOCK_INFO(sb, linfo);
struct scoutfs_lock *lock;
@@ -613,63 +705,62 @@ int scoutfs_lock_grant_response(struct super_block *sb,
trace_scoutfs_lock_grant_response(sb, lock);
BUG_ON(!lock->request_pending);
bug_on_inconsistent_grant_cache(sb, lock, nl->old_mode, nl->new_mode);
if (!lock_mode_can_read(nl->old_mode) && lock_mode_can_read(nl->new_mode))
lock->refresh_gen = atomic64_inc_return(&linfo->next_refresh_gen);
lock->request_pending = 0;
lock->mode = nl->new_mode;
lock->write_seq = le64_to_cpu(nl->write_seq);
trace_scoutfs_lock_granted(sb, lock);
wake_up(&lock->waitq);
put_lock(linfo, lock);
lock->grant_resp = *gr;
list_add_tail(&lock->grant_head, &linfo->grant_list);
queue_grant_work(linfo);
spin_unlock(&linfo->lock);
return 0;
}
struct inv_req {
struct list_head head;
struct scoutfs_lock *lock;
u64 net_id;
struct scoutfs_net_lock nl;
};
/*
* Each lock has received a lock invalidation request from the server
* which specifies a new mode for the lock. Our processing state
* machine and server failover and lock recovery can both conspire to
* give us triplicate invalidation requests. The incoming requests for
* a given lock need to be processed in order, but we can process locks
* in any order.
* which specifies a new mode for the lock. The server will only send
* one invalidation request at a time for each lock.
*
* This is an unsolicited request from the server so it can arrive at
* any time after we make the server aware of the lock. We wait for
* users of the current mode to unlock before invalidating.
* any time after we make the server aware of the lock by initially
* requesting it. We wait for users of the current mode to unlock
* before invalidating.
*
* This can arrive on behalf of our request for a mode that conflicts
* with our current mode. We have to proceed while we have a request
* pending. We can also be racing with shrink requests being sent while
* we're invalidating.
*
* This can be processed concurrently and experience reordering with a
* grant response sent back-to-back from the server. We carefully only
* invalidate once the lock mode matches what the server told us to
* invalidate.
*
* We delay invalidation processing until a grace period has elapsed
* since the last unlock. The intent is to let users do a reasonable
* batch of work before dropping the lock. Continuous unlocking can
* continuously extend the deadline.
*
* Before we start invalidating the lock we set the lock to the new
* mode, preventing further incompatible users of the old mode from
* using the lock while we're invalidating. We record the previously
* granted mode so that we can send lock recover responses with the old
* granted mode during invalidation.
* using the lock while we're invalidating.
*
* This does a lot of serialized inode invalidation in one context and
* performs a lot of repeated calls to sync. It would be nice to get
* some concurrent inode invalidation and to more carefully only call
* sync when needed.
*/
static void lock_invalidate_worker(struct work_struct *work)
{
struct lock_info *linfo = container_of(work, struct lock_info, inv_work);
struct lock_info *linfo = container_of(work, struct lock_info,
inv_dwork.work);
struct super_block *sb = linfo->sb;
struct scoutfs_net_lock *nl;
struct scoutfs_lock *lock;
struct scoutfs_lock *tmp;
struct inv_req *ireq;
unsigned long delay = MAX_JIFFY_OFFSET;
ktime_t now = ktime_get();
ktime_t deadline;
LIST_HEAD(ready);
u64 net_id;
int ret;
scoutfs_inc_counter(sb, lock_invalidate_work);
@@ -677,15 +768,27 @@ static void lock_invalidate_worker(struct work_struct *work)
spin_lock(&linfo->lock);
list_for_each_entry_safe(lock, tmp, &linfo->inv_list, inv_head) {
ireq = list_first_entry(&lock->inv_list, struct inv_req, head);
nl = &ireq->nl;
nl = &lock->inv_nl;
/* skip if grace hasn't elapsed, record earliest */
deadline = lock->grace_deadline;
if (ktime_before(now, deadline)) {
delay = min(delay,
nsecs_to_jiffies(ktime_to_ns(
ktime_sub(deadline, now))));
scoutfs_inc_counter(linfo->sb, lock_grace_wait);
continue;
}
/* wait for reordered grant to finish */
if (lock->mode != nl->old_mode)
continue;
/* wait until incompatible holders unlock */
if (!lock_counts_match(nl->new_mode, lock->users))
continue;
/* set the new mode, no incompatible users during inval, recov needs old */
lock->invalidating_mode = lock->mode;
/* set the new mode, no incompatible users during inval */
lock->mode = nl->new_mode;
/* move everyone that's ready to our private list */
@@ -695,23 +798,18 @@ static void lock_invalidate_worker(struct work_struct *work)
spin_unlock(&linfo->lock);
if (list_empty(&ready))
return;
goto out;
/* invalidate once the lock is read */
list_for_each_entry(lock, &ready, inv_head) {
ireq = list_first_entry(&lock->inv_list, struct inv_req, head);
nl = &ireq->nl;
nl = &lock->inv_nl;
net_id = lock->inv_net_id;
/* only lock protocol, inv can't call subsystems after shutdown */
if (!linfo->shutdown) {
ret = lock_invalidate(sb, lock, nl->old_mode, nl->new_mode);
BUG_ON(ret);
}
ret = lock_invalidate(sb, lock, nl->old_mode, nl->new_mode);
BUG_ON(ret);
/* respond with the key and modes from the request, server might have died */
ret = scoutfs_client_lock_response(sb, ireq->net_id, nl);
if (ret == -ENOTCONN)
ret = 0;
/* respond with the key and modes from the request */
ret = scoutfs_client_lock_response(sb, net_id, nl);
BUG_ON(ret);
scoutfs_inc_counter(sb, lock_invalidate_response);
@@ -721,91 +819,53 @@ static void lock_invalidate_worker(struct work_struct *work)
spin_lock(&linfo->lock);
list_for_each_entry_safe(lock, tmp, &ready, inv_head) {
ireq = list_first_entry(&lock->inv_list, struct inv_req, head);
list_del_init(&lock->inv_head);
lock->invalidate_pending = 0;
trace_scoutfs_lock_invalidated(sb, lock);
list_del(&ireq->head);
kfree(ireq);
lock->invalidating_mode = SCOUTFS_LOCK_NULL;
if (list_empty(&lock->inv_list)) {
/* finish if another request didn't arrive */
list_del_init(&lock->inv_head);
lock->invalidate_pending = 0;
wake_up(&lock->waitq);
} else {
/* another request arrived, back on the list and requeue */
list_move_tail(&lock->inv_head, &linfo->inv_list);
queue_inv_work(linfo);
}
wake_up(&lock->waitq);
put_lock(linfo, lock);
}
/* grant might have been waiting for invalidate request */
queue_grant_work(linfo);
spin_unlock(&linfo->lock);
out:
/* queue delayed work if invalidations waiting on grace deadline */
if (delay != MAX_JIFFY_OFFSET)
queue_delayed_work(linfo->workq, &linfo->inv_dwork, delay);
}
/*
* Add an incoming invalidation request to the end of the list on the
* lock and queue it for blocking invalidation work. This is being
* called synchronously in the net recv path to avoid reordering with
* grants that were sent immediately before the server sent this
* invalidation.
* Record an incoming invalidate request from the server and add its lock
* to the list for processing.
*
* Incoming invalidation requests are a function of the remote lock
* server's state machine and are slightly decoupled from our lock
* state. We can receive duplicate requests if the server is quick
* enough to send the next request after we send a previous reply, or if
* pending invalidation spans server failover and lock recovery.
*
* Similarly, we can get a request to invalidate a lock we don't have if
* invalidation finished just after lock recovery to a new server.
* Happily we can just reply because we satisfy the invalidation
* response promise to not be using the old lock's mode if the lock
* doesn't exist.
* This is trusting the server and will crash if it's sent bad requests :/
*/
int scoutfs_lock_invalidate_request(struct super_block *sb, u64 net_id,
struct scoutfs_net_lock *nl)
{
DECLARE_LOCK_INFO(sb, linfo);
struct scoutfs_lock *lock = NULL;
struct inv_req *ireq;
int ret = 0;
struct scoutfs_lock *lock;
scoutfs_inc_counter(sb, lock_invalidate_request);
ireq = kmalloc(sizeof(struct inv_req), GFP_NOFS);
BUG_ON(!ireq); /* lock server doesn't handle response errors */
if (ireq == NULL) {
ret = -ENOMEM;
goto out;
}
spin_lock(&linfo->lock);
lock = get_lock(sb, &nl->key);
BUG_ON(!lock);
if (lock) {
BUG_ON(lock->invalidate_pending);
lock->invalidate_pending = 1;
lock->inv_nl = *nl;
lock->inv_net_id = net_id;
list_add_tail(&lock->inv_head, &linfo->inv_list);
trace_scoutfs_lock_invalidate_request(sb, lock);
ireq->lock = lock;
ireq->net_id = net_id;
ireq->nl = *nl;
if (list_empty(&lock->inv_list)) {
list_add_tail(&lock->inv_head, &linfo->inv_list);
lock->invalidate_pending = 1;
queue_inv_work(linfo);
}
list_add_tail(&ireq->head, &lock->inv_list);
queue_inv_work(linfo);
}
spin_unlock(&linfo->lock);
out:
if (!lock) {
ret = scoutfs_client_lock_response(sb, net_id, nl);
BUG_ON(ret); /* lock server doesn't fence timed out client requests */
}
return ret;
return 0;
}
/*
@@ -820,7 +880,6 @@ int scoutfs_lock_recover_request(struct super_block *sb, u64 net_id,
{
DECLARE_LOCK_INFO(sb, linfo);
struct scoutfs_net_lock_recover *nlr;
enum scoutfs_lock_mode mode;
struct scoutfs_lock *lock;
struct scoutfs_lock *next;
struct rb_node *node;
@@ -841,15 +900,10 @@ int scoutfs_lock_recover_request(struct super_block *sb, u64 net_id,
for (i = 0; lock && i < SCOUTFS_NET_LOCK_MAX_RECOVER_NR; i++) {
if (lock->invalidating_mode != SCOUTFS_LOCK_NULL)
mode = lock->invalidating_mode;
else
mode = lock->mode;
nlr->locks[i].key = lock->start;
nlr->locks[i].write_seq = cpu_to_le64(lock->write_seq);
nlr->locks[i].old_mode = mode;
nlr->locks[i].new_mode = mode;
nlr->locks[i].write_version = cpu_to_le64(lock->write_version);
nlr->locks[i].old_mode = lock->mode;
nlr->locks[i].new_mode = lock->mode;
node = rb_next(&lock->node);
if (node)
@@ -942,7 +996,7 @@ static int lock_key_range(struct super_block *sb, enum scoutfs_lock_mode mode, i
lock_inc_count(lock->waiters, mode);
for (;;) {
if (WARN_ON_ONCE(linfo->shutdown)) {
if (linfo->shutdown) {
ret = -ESHUTDOWN;
break;
}
@@ -987,14 +1041,8 @@ static int lock_key_range(struct super_block *sb, enum scoutfs_lock_mode mode, i
trace_scoutfs_lock_wait(sb, lock);
if (flags & SCOUTFS_LKF_INTERRUPTIBLE) {
ret = wait_event_interruptible(lock->waitq,
lock_wait_cond(sb, lock, mode));
} else {
wait_event(lock->waitq, lock_wait_cond(sb, lock, mode));
ret = 0;
}
ret = wait_event_interruptible(lock->waitq,
lock_wait_cond(sb, lock, mode));
spin_lock(&linfo->lock);
if (ret)
break;
@@ -1051,7 +1099,7 @@ int scoutfs_lock_inode(struct super_block *sb, enum scoutfs_lock_mode mode, int
goto out;
if (flags & SCOUTFS_LKF_REFRESH_INODE) {
ret = scoutfs_inode_refresh(inode, *lock);
ret = scoutfs_inode_refresh(inode, *lock, flags);
if (ret < 0) {
scoutfs_unlock(sb, *lock, mode);
*lock = NULL;
@@ -1212,46 +1260,37 @@ int scoutfs_lock_inode_index(struct super_block *sb, enum scoutfs_lock_mode mode
}
/*
* Orphan items are stored in their own zone which are modified with
* shared write_only locks and are read inconsistently without locks by
* background scanning work.
* The rid lock protects a mount's private persistent items in the rid
* zone. It's held for the duration of the mount. It lets the mount
* modify the rid items at will and signals to other mounts that we're
* still alive and our rid items shouldn't be reclaimed.
*
* Since we only use write_only locks we just lock the entire zone, but
* the api provides the inode in case we ever change the locking scheme.
* Being held for the entire mount prevents other nodes from reclaiming
* our items, like free blocks, when it would make sense for them to be
* able to. Maybe we have a bunch free and they're trying to allocate
* and are getting ENOSPC.
*/
int scoutfs_lock_orphan(struct super_block *sb, enum scoutfs_lock_mode mode, int flags, u64 ino,
struct scoutfs_lock **lock)
int scoutfs_lock_rid(struct super_block *sb, enum scoutfs_lock_mode mode, int flags,
u64 rid, struct scoutfs_lock **lock)
{
struct scoutfs_key start;
struct scoutfs_key end;
scoutfs_key_set_zeros(&start);
start.sk_zone = SCOUTFS_ORPHAN_ZONE;
start.sko_ino = 0;
start.sk_type = SCOUTFS_ORPHAN_TYPE;
start.sk_zone = SCOUTFS_RID_ZONE;
start.sko_rid = cpu_to_le64(rid);
scoutfs_key_set_zeros(&end);
end.sk_zone = SCOUTFS_ORPHAN_ZONE;
end.sko_ino = cpu_to_le64(U64_MAX);
end.sk_type = SCOUTFS_ORPHAN_TYPE;
return lock_key_range(sb, mode, flags, &start, &end, lock);
}
int scoutfs_lock_xattr_totl(struct super_block *sb, enum scoutfs_lock_mode mode, int flags,
struct scoutfs_lock **lock)
{
struct scoutfs_key start;
struct scoutfs_key end;
scoutfs_key_set_zeros(&start);
start.sk_zone = SCOUTFS_XATTR_TOTL_ZONE;
scoutfs_key_set_ones(&end);
end.sk_zone = SCOUTFS_XATTR_TOTL_ZONE;
end.sk_zone = SCOUTFS_RID_ZONE;
end.sko_rid = cpu_to_le64(rid);
return lock_key_range(sb, mode, flags, &start, &end, lock);
}
/*
* As we unlock we always extend the grace period to give the caller
* another pass at the lock before its invalidated.
*/
void scoutfs_unlock(struct super_block *sb, struct scoutfs_lock *lock, enum scoutfs_lock_mode mode)
{
DECLARE_LOCK_INFO(sb, linfo);
@@ -1264,6 +1303,7 @@ void scoutfs_unlock(struct super_block *sb, struct scoutfs_lock *lock, enum scou
spin_lock(&linfo->lock);
lock_dec_count(lock->users, mode);
extend_grace(sb, lock);
if (lock_mode_can_write(mode))
lock->dirty_trans_seq = scoutfs_trans_sample_seq(sb);
@@ -1438,7 +1478,7 @@ restart:
BUG_ON(lock->mode == SCOUTFS_LOCK_NULL);
BUG_ON(!list_empty(&lock->shrink_head));
if (nr-- == 0)
if (linfo->shutdown || nr-- == 0)
break;
__lock_del_lru(linfo, lock);
@@ -1465,7 +1505,7 @@ out:
return ret;
}
void scoutfs_free_unused_locks(struct super_block *sb)
void scoutfs_free_unused_locks(struct super_block *sb, unsigned long nr)
{
struct lock_info *linfo = SCOUTFS_SB(sb)->lock_info;
struct shrink_control sc = {
@@ -1493,80 +1533,15 @@ static void lock_tseq_show(struct seq_file *m, struct scoutfs_tseq_entry *ent)
}
/*
* shrink_dcache_for_umount() tears down dentries with no locking. We
* need to make sure that our invalidation won't touch dentries before
* we return and the caller calls the generic vfs unmount path.
*/
void scoutfs_lock_unmount_begin(struct super_block *sb)
{
DECLARE_LOCK_INFO(sb, linfo);
if (linfo) {
linfo->unmounting = true;
flush_work(&linfo->inv_work);
}
}
void scoutfs_lock_flush_invalidate(struct super_block *sb)
{
DECLARE_LOCK_INFO(sb, linfo);
if (linfo)
flush_work(&linfo->inv_work);
}
static u64 get_held_lock_refresh_gen(struct super_block *sb, struct scoutfs_key *start)
{
DECLARE_LOCK_INFO(sb, linfo);
struct scoutfs_lock *lock;
u64 refresh_gen = 0;
/* this can be called from all manner of places */
if (!linfo)
return 0;
spin_lock(&linfo->lock);
lock = lock_lookup(sb, start, NULL);
if (lock) {
if (lock_mode_can_read(lock->mode))
refresh_gen = lock->refresh_gen;
}
spin_unlock(&linfo->lock);
return refresh_gen;
}
u64 scoutfs_lock_ino_refresh_gen(struct super_block *sb, u64 ino)
{
struct scoutfs_key start;
scoutfs_key_set_zeros(&start);
start.sk_zone = SCOUTFS_FS_ZONE;
start.ski_ino = cpu_to_le64(ino & ~(u64)SCOUTFS_LOCK_INODE_GROUP_MASK);
return get_held_lock_refresh_gen(sb, &start);
}
/*
* The caller is going to be shutting down transactions and the client.
* We need to make sure that locking won't call either after we return.
* The caller is going to be calling _destroy soon and, critically, is
* about to shutdown networking before calling us so that we don't get
* any callbacks while we're destroying. We have to ensure that we
* won't call networking after this returns.
*
* At this point all fs callers and internal services that use locks
* should have stopped. We won't have any callers initiating lock
* transitions and sending requests. We set the shutdown flag to catch
* anyone who breaks this rule.
*
* We unregister the shrinker so that we won't try and send null
* requests in response to memory pressure. The locks will all be
* unceremoniously dropped once we get a farewell response from the
* server which indicates that they destroyed our locking state.
*
* We will still respond to invalidation requests that have to be
* processed to let unmount in other mounts acquire locks and make
* progress. However, we don't fully process the invalidation because
* we're shutting down. We only update the lock state and send the
* response. We shouldn't have any users of locking that require
* invalidation correctness at this point.
* Internal fs threads can be using locking, and locking can have async
* work pending. We use ->shutdown to force callers to return
* -ESHUTDOWN and to prevent the future queueing of work that could call
* networking. Locks whose work is stopped will be torn down by _destroy.
*/
void scoutfs_lock_shutdown(struct super_block *sb)
{
@@ -1579,18 +1554,19 @@ void scoutfs_lock_shutdown(struct super_block *sb)
trace_scoutfs_lock_shutdown(sb, linfo);
/* stop the shrinker from queueing work */
unregister_shrinker(&linfo->shrinker);
flush_work(&linfo->shrink_work);
/* cause current and future lock calls to return errors */
spin_lock(&linfo->lock);
linfo->shutdown = true;
for (node = rb_first(&linfo->lock_tree); node; node = rb_next(node)) {
lock = rb_entry(node, struct scoutfs_lock, node);
wake_up(&lock->waitq);
}
spin_unlock(&linfo->lock);
flush_work(&linfo->grant_work);
flush_delayed_work(&linfo->inv_dwork);
flush_work(&linfo->shrink_work);
}
/*
@@ -1610,8 +1586,6 @@ void scoutfs_lock_destroy(struct super_block *sb)
struct scoutfs_sb_info *sbi = SCOUTFS_SB(sb);
DECLARE_LOCK_INFO(sb, linfo);
struct scoutfs_lock *lock;
struct inv_req *ireq_tmp;
struct inv_req *ireq;
struct rb_node *node;
enum scoutfs_lock_mode mode;
@@ -1620,6 +1594,8 @@ void scoutfs_lock_destroy(struct super_block *sb)
trace_scoutfs_lock_destroy(sb, linfo);
/* stop the shrinker from queueing work */
unregister_shrinker(&linfo->shrinker);
/* make sure that no one's actively using locks */
spin_lock(&linfo->lock);
@@ -1638,6 +1614,8 @@ void scoutfs_lock_destroy(struct super_block *sb)
spin_unlock(&linfo->lock);
if (linfo->workq) {
/* pending grace work queues normal work */
flush_workqueue(linfo->workq);
/* now all work won't queue itself */
destroy_workqueue(linfo->workq);
}
@@ -1654,31 +1632,22 @@ void scoutfs_lock_destroy(struct super_block *sb)
* of free).
*/
spin_lock(&linfo->lock);
node = rb_first(&linfo->lock_tree);
while (node) {
lock = rb_entry(node, struct scoutfs_lock, node);
node = rb_next(node);
list_for_each_entry_safe(ireq, ireq_tmp, &lock->inv_list, head) {
list_del_init(&ireq->head);
put_lock(linfo, ireq->lock);
kfree(ireq);
}
lock->request_pending = 0;
if (!list_empty(&lock->lru_head))
__lock_del_lru(linfo, lock);
if (!list_empty(&lock->inv_head)) {
if (!list_empty(&lock->grant_head))
list_del_init(&lock->grant_head);
if (!list_empty(&lock->inv_head))
list_del_init(&lock->inv_head);
lock->invalidate_pending = 0;
}
if (!list_empty(&lock->shrink_head))
list_del_init(&lock->shrink_head);
lock_remove(linfo, lock);
lock_free(linfo, lock);
}
spin_unlock(&linfo->lock);
kfree(linfo);
@@ -1703,7 +1672,9 @@ int scoutfs_lock_setup(struct super_block *sb)
linfo->shrinker.seeks = DEFAULT_SEEKS;
register_shrinker(&linfo->shrinker);
INIT_LIST_HEAD(&linfo->lru_list);
INIT_WORK(&linfo->inv_work, lock_invalidate_worker);
INIT_WORK(&linfo->grant_work, lock_grant_worker);
INIT_LIST_HEAD(&linfo->grant_list);
INIT_DELAYED_WORK(&linfo->inv_dwork, lock_invalidate_worker);
INIT_LIST_HEAD(&linfo->inv_list);
INIT_WORK(&linfo->shrink_work, lock_shrink_worker);
INIT_LIST_HEAD(&linfo->shrink_list);

View File

@@ -6,15 +6,12 @@
#define SCOUTFS_LKF_REFRESH_INODE 0x01 /* update stale inode from item */
#define SCOUTFS_LKF_NONBLOCK 0x02 /* only use already held locks */
#define SCOUTFS_LKF_INTERRUPTIBLE 0x04 /* pending signals return -ERESTARTSYS */
#define SCOUTFS_LKF_INVALID (~((SCOUTFS_LKF_INTERRUPTIBLE << 1) - 1))
#define SCOUTFS_LKF_INVALID (~((SCOUTFS_LKF_NONBLOCK << 1) - 1))
#define SCOUTFS_LOCK_NR_MODES SCOUTFS_LOCK_INVALID
struct inode_deletion_lock_data;
/*
* A few fields (start, end, refresh_gen, write_seq, granted_mode)
* A few fields (start, end, refresh_gen, write_version, granted_mode)
* are referenced by code outside lock.c.
*/
struct scoutfs_lock {
@@ -24,22 +21,26 @@ struct scoutfs_lock {
struct rb_node node;
struct rb_node range_node;
u64 refresh_gen;
u64 write_seq;
u64 write_version;
u64 dirty_trans_seq;
struct scoutfs_net_roots roots;
struct list_head lru_head;
wait_queue_head_t waitq;
ktime_t grace_deadline;
unsigned long request_pending:1,
invalidate_pending:1;
struct list_head inv_head; /* entry in linfo's list of locks with invalidations */
struct list_head inv_list; /* list of lock's invalidation requests */
struct list_head grant_head;
struct scoutfs_net_lock_grant_response grant_resp;
struct list_head inv_head;
struct scoutfs_net_lock inv_nl;
u64 inv_net_id;
struct list_head shrink_head;
spinlock_t cov_list_lock;
struct list_head cov_list;
enum scoutfs_lock_mode mode;
enum scoutfs_lock_mode invalidating_mode;
unsigned int waiters[SCOUTFS_LOCK_NR_MODES];
unsigned int users[SCOUTFS_LOCK_NR_MODES];
@@ -47,9 +48,6 @@ struct scoutfs_lock {
/* the forest tracks which log tree last saw bloom bit updates */
atomic64_t forest_bloom_nr;
/* inode deletion tracks some state per lock */
struct inode_deletion_lock_data *inode_deletion_data;
};
struct scoutfs_lock_coverage {
@@ -59,7 +57,7 @@ struct scoutfs_lock_coverage {
};
int scoutfs_lock_grant_response(struct super_block *sb,
struct scoutfs_net_lock *nl);
struct scoutfs_net_lock_grant_response *gr);
int scoutfs_lock_invalidate_request(struct super_block *sb, u64 net_id,
struct scoutfs_net_lock *nl);
int scoutfs_lock_recover_request(struct super_block *sb, u64 net_id,
@@ -82,10 +80,8 @@ int scoutfs_lock_inodes(struct super_block *sb, enum scoutfs_lock_mode mode, int
struct inode *d, struct scoutfs_lock **D_lock);
int scoutfs_lock_rename(struct super_block *sb, enum scoutfs_lock_mode mode, int flags,
struct scoutfs_lock **lock);
int scoutfs_lock_orphan(struct super_block *sb, enum scoutfs_lock_mode mode, int flags,
u64 ino, struct scoutfs_lock **lock);
int scoutfs_lock_xattr_totl(struct super_block *sb, enum scoutfs_lock_mode mode, int flags,
struct scoutfs_lock **lock);
int scoutfs_lock_rid(struct super_block *sb, enum scoutfs_lock_mode mode, int flags,
u64 rid, struct scoutfs_lock **lock);
void scoutfs_unlock(struct super_block *sb, struct scoutfs_lock *lock,
enum scoutfs_lock_mode mode);
@@ -100,13 +96,9 @@ void scoutfs_lock_del_coverage(struct super_block *sb,
bool scoutfs_lock_protected(struct scoutfs_lock *lock, struct scoutfs_key *key,
enum scoutfs_lock_mode mode);
u64 scoutfs_lock_ino_refresh_gen(struct super_block *sb, u64 ino);
void scoutfs_free_unused_locks(struct super_block *sb);
void scoutfs_free_unused_locks(struct super_block *sb, unsigned long nr);
int scoutfs_lock_setup(struct super_block *sb);
void scoutfs_lock_unmount_begin(struct super_block *sb);
void scoutfs_lock_flush_invalidate(struct super_block *sb);
void scoutfs_lock_shutdown(struct super_block *sb);
void scoutfs_lock_destroy(struct super_block *sb);

View File

@@ -20,10 +20,10 @@
#include "tseq.h"
#include "spbm.h"
#include "block.h"
#include "btree.h"
#include "msg.h"
#include "scoutfs_trace.h"
#include "lock_server.h"
#include "recov.h"
/*
* The scoutfs server implements a simple lock service. Client mounts
@@ -56,11 +56,14 @@
* Message requests and responses are reliably delivered in order across
* reconnection.
*
* As a new server comes up it recovers lock state from existing clients
* which were connected to a previous lock server. Recover requests are
* sent to clients as they connect and they respond with all there
* locks. Once all clients and locks are accounted for normal
* processing can resume.
* The server maintains a persistent record of connected clients. A new
* server instance discovers these and waits for previously connected
* clients to reconnect and recover their state before proceeding. If
* clients don't reconnect they are forcefully prevented from unsafely
* accessing the shared persistent storage. (fenced, according to the
* rules of the platform.. could range from being powered off to having
* their switch port disabled to having their local block device set
* read-only.)
*
* The lock server doesn't respond to memory pressure. The only way
* locks are freed is if they are invalidated to null on behalf of a
@@ -74,12 +77,19 @@ struct lock_server_info {
struct super_block *sb;
spinlock_t lock;
struct mutex mutex;
struct rb_root locks_root;
struct scoutfs_spbm recovery_pending;
struct delayed_work recovery_dwork;
struct scoutfs_tseq_tree tseq_tree;
struct dentry *tseq_dentry;
struct scoutfs_tseq_tree stats_tseq_tree;
struct dentry *stats_tseq_dentry;
struct scoutfs_alloc *alloc;
struct scoutfs_block_writer *wri;
atomic64_t write_version;
};
#define DECLARE_LOCK_SERVER_INFO(sb, name) \
@@ -106,9 +116,6 @@ struct server_lock_node {
struct list_head granted;
struct list_head requested;
struct list_head invalidated;
struct scoutfs_tseq_entry stats_tseq_entry;
u64 stats[SLT_NR];
};
/*
@@ -153,30 +160,30 @@ enum {
*/
static void add_client_entry(struct server_lock_node *snode,
struct list_head *list,
struct client_lock_entry *c_ent)
struct client_lock_entry *clent)
{
WARN_ON_ONCE(!mutex_is_locked(&snode->mutex));
if (list_empty(&c_ent->head))
list_add_tail(&c_ent->head, list);
if (list_empty(&clent->head))
list_add_tail(&clent->head, list);
else
list_move_tail(&c_ent->head, list);
list_move_tail(&clent->head, list);
c_ent->on_list = list == &snode->granted ? OL_GRANTED :
clent->on_list = list == &snode->granted ? OL_GRANTED :
list == &snode->requested ? OL_REQUESTED :
OL_INVALIDATED;
}
static void free_client_entry(struct lock_server_info *inf,
struct server_lock_node *snode,
struct client_lock_entry *c_ent)
struct client_lock_entry *clent)
{
WARN_ON_ONCE(!mutex_is_locked(&snode->mutex));
if (!list_empty(&c_ent->head))
list_del_init(&c_ent->head);
scoutfs_tseq_del(&inf->tseq_tree, &c_ent->tseq_entry);
kfree(c_ent);
if (!list_empty(&clent->head))
list_del_init(&clent->head);
scoutfs_tseq_del(&inf->tseq_tree, &clent->tseq_entry);
kfree(clent);
}
static bool invalid_mode(u8 mode)
@@ -298,8 +305,6 @@ static struct server_lock_node *alloc_server_lock(struct lock_server_info *inf,
snode = get_server_lock(inf, key, ins, false);
if (snode != ins)
kfree(ins);
else
scoutfs_tseq_add(&inf->stats_tseq_tree, &snode->stats_tseq_entry);
}
}
@@ -329,23 +334,21 @@ static void put_server_lock(struct lock_server_info *inf,
mutex_unlock(&snode->mutex);
if (should_free) {
scoutfs_tseq_del(&inf->stats_tseq_tree, &snode->stats_tseq_entry);
if (should_free)
kfree(snode);
}
}
static struct client_lock_entry *find_entry(struct server_lock_node *snode,
struct list_head *list,
u64 rid)
{
struct client_lock_entry *c_ent;
struct client_lock_entry *clent;
WARN_ON_ONCE(!mutex_is_locked(&snode->mutex));
list_for_each_entry(c_ent, list, head) {
if (c_ent->rid == rid)
return c_ent;
list_for_each_entry(clent, list, head) {
if (clent->rid == rid)
return clent;
}
return NULL;
@@ -364,7 +367,7 @@ int scoutfs_lock_server_request(struct super_block *sb, u64 rid,
u64 net_id, struct scoutfs_net_lock *nl)
{
DECLARE_LOCK_SERVER_INFO(sb, inf);
struct client_lock_entry *c_ent;
struct client_lock_entry *clent;
struct server_lock_node *snode;
int ret;
@@ -376,29 +379,27 @@ int scoutfs_lock_server_request(struct super_block *sb, u64 rid,
goto out;
}
c_ent = kzalloc(sizeof(struct client_lock_entry), GFP_NOFS);
if (!c_ent) {
clent = kzalloc(sizeof(struct client_lock_entry), GFP_NOFS);
if (!clent) {
ret = -ENOMEM;
goto out;
}
INIT_LIST_HEAD(&c_ent->head);
c_ent->rid = rid;
c_ent->net_id = net_id;
c_ent->mode = nl->new_mode;
INIT_LIST_HEAD(&clent->head);
clent->rid = rid;
clent->net_id = net_id;
clent->mode = nl->new_mode;
snode = alloc_server_lock(inf, &nl->key);
if (snode == NULL) {
kfree(c_ent);
kfree(clent);
ret = -ENOMEM;
goto out;
}
snode->stats[SLT_REQUEST]++;
c_ent->snode = snode;
add_client_entry(snode, &snode->requested, c_ent);
scoutfs_tseq_add(&inf->tseq_tree, &c_ent->tseq_entry);
clent->snode = snode;
add_client_entry(snode, &snode->requested, clent);
scoutfs_tseq_add(&inf->tseq_tree, &clent->tseq_entry);
ret = process_waiting_requests(sb, snode);
out:
@@ -417,7 +418,7 @@ int scoutfs_lock_server_response(struct super_block *sb, u64 rid,
struct scoutfs_net_lock *nl)
{
DECLARE_LOCK_SERVER_INFO(sb, inf);
struct client_lock_entry *c_ent;
struct client_lock_entry *clent;
struct server_lock_node *snode;
int ret;
@@ -429,27 +430,25 @@ int scoutfs_lock_server_response(struct super_block *sb, u64 rid,
goto out;
}
/* XXX should always have a server lock here? */
/* XXX should always have a server lock here? recovery? */
snode = get_server_lock(inf, &nl->key, NULL, false);
if (!snode) {
ret = -EINVAL;
goto out;
}
snode->stats[SLT_RESPONSE]++;
c_ent = find_entry(snode, &snode->invalidated, rid);
if (!c_ent) {
clent = find_entry(snode, &snode->invalidated, rid);
if (!clent) {
put_server_lock(inf, snode);
ret = -EINVAL;
goto out;
}
if (nl->new_mode == SCOUTFS_LOCK_NULL) {
free_client_entry(inf, snode, c_ent);
free_client_entry(inf, snode, clent);
} else {
c_ent->mode = nl->new_mode;
add_client_entry(snode, &snode->granted, c_ent);
clent->mode = nl->new_mode;
add_client_entry(snode, &snode->granted, clent);
}
ret = process_waiting_requests(sb, snode);
@@ -474,27 +473,31 @@ out:
* so we unlock the snode mutex.
*
* All progress must wait for all clients to finish with recovery
* because we don't know which locks they'll hold. Once recover
* finishes the server calls us to kick all the locks that were waiting
* during recovery.
* because we don't know which locks they'll hold. The unlocked
* recovery_pending test here is OK. It's filled by setup before
* anything runs. It's emptied by recovery completion. We can get a
* false nonempty result if we race with recovery completion, but that's
* OK because recovery completion processes all the locks that have
* requests after emptying, including the unlikely loser of that race.
*/
static int process_waiting_requests(struct super_block *sb,
struct server_lock_node *snode)
{
DECLARE_LOCK_SERVER_INFO(sb, inf);
struct scoutfs_net_lock_grant_response gres;
struct scoutfs_net_lock nl;
struct client_lock_entry *req;
struct client_lock_entry *req_tmp;
struct client_lock_entry *gr;
struct client_lock_entry *gr_tmp;
u64 seq;
u64 wv;
int ret;
BUG_ON(!mutex_is_locked(&snode->mutex));
/* processing waits for all invalidation responses or recovery */
if (!list_empty(&snode->invalidated) ||
scoutfs_recov_next_pending(sb, 0, SCOUTFS_RECOV_LOCKS) != 0) {
!scoutfs_spbm_empty(&inf->recovery_pending)) {
ret = 0;
goto out;
}
@@ -518,7 +521,6 @@ static int process_waiting_requests(struct super_block *sb,
trace_scoutfs_lock_message(sb, SLT_SERVER,
SLT_INVALIDATE, SLT_REQUEST,
gr->rid, 0, &nl);
snode->stats[SLT_INVALIDATE]++;
add_client_entry(snode, &snode->invalidated, gr);
}
@@ -529,7 +531,6 @@ static int process_waiting_requests(struct super_block *sb,
nl.key = snode->key;
nl.new_mode = req->mode;
nl.write_seq = 0;
/* see if there's an existing compatible grant to replace */
gr = find_entry(snode, &snode->granted, req->rid);
@@ -542,20 +543,21 @@ static int process_waiting_requests(struct super_block *sb,
if (nl.new_mode == SCOUTFS_LOCK_WRITE ||
nl.new_mode == SCOUTFS_LOCK_WRITE_ONLY) {
/* doesn't commit seq update, recovered with locks */
seq = scoutfs_server_next_seq(sb);
nl.write_seq = cpu_to_le64(seq);
wv = atomic64_inc_return(&inf->write_version);
nl.write_version = cpu_to_le64(wv);
}
gres.nl = nl;
scoutfs_server_get_roots(sb, &gres.roots);
ret = scoutfs_server_lock_response(sb, req->rid,
req->net_id, &nl);
req->net_id, &gres);
if (ret)
goto out;
trace_scoutfs_lock_message(sb, SLT_SERVER, SLT_GRANT,
SLT_RESPONSE, req->rid,
req->net_id, &nl);
snode->stats[SLT_GRANT]++;
/* don't track null client locks, track all else */
if (req->mode == SCOUTFS_LOCK_NULL)
@@ -571,39 +573,85 @@ out:
return ret;
}
static void init_lock_clients_key(struct scoutfs_key *key, u64 rid)
{
*key = (struct scoutfs_key) {
.sk_zone = SCOUTFS_LOCK_CLIENTS_ZONE,
.sklc_rid = cpu_to_le64(rid),
};
}
/*
* The server received a greeting from a client for the first time. If
* the client is in lock recovery then we send the initial lock request.
* the client had already talked to the server then we must find an
* existing record for it and should begin recovery. If it doesn't have
* a record then its timed out and we can't allow it to reconnect. If
* its connecting for the first time then we insert a new record. If
*
* This is running in concurrent client greeting processing contexts.
*/
int scoutfs_lock_server_greeting(struct super_block *sb, u64 rid)
int scoutfs_lock_server_greeting(struct super_block *sb, u64 rid,
bool should_exist)
{
DECLARE_LOCK_SERVER_INFO(sb, inf);
struct scoutfs_super_block *super = &SCOUTFS_SB(sb)->super;
SCOUTFS_BTREE_ITEM_REF(iref);
struct scoutfs_key key;
int ret;
if (scoutfs_recov_is_pending(sb, rid, SCOUTFS_RECOV_LOCKS)) {
init_lock_clients_key(&key, rid);
mutex_lock(&inf->mutex);
if (should_exist) {
ret = scoutfs_btree_lookup(sb, &super->lock_clients, &key,
&iref);
if (ret == 0)
scoutfs_btree_put_iref(&iref);
} else {
ret = scoutfs_btree_insert(sb, inf->alloc, inf->wri,
&super->lock_clients,
&key, NULL, 0);
}
mutex_unlock(&inf->mutex);
if (should_exist && ret == 0) {
scoutfs_key_set_zeros(&key);
ret = scoutfs_server_lock_recover_request(sb, rid, &key);
} else {
ret = 0;
if (ret)
goto out;
}
out:
return ret;
}
/*
* All clients have finished lock recovery, we can make forward process
* on all the queued requests that were waiting on recovery.
* A client sent their last recovery response and can exit recovery. If
* they were the last client in recovery then we can process all the
* server locks that had requests.
*/
int scoutfs_lock_server_finished_recovery(struct super_block *sb)
static int finished_recovery(struct super_block *sb, u64 rid, bool cancel)
{
DECLARE_LOCK_SERVER_INFO(sb, inf);
struct server_lock_node *snode;
struct scoutfs_key key;
bool still_pending;
int ret = 0;
spin_lock(&inf->lock);
scoutfs_spbm_clear(&inf->recovery_pending, rid);
still_pending = !scoutfs_spbm_empty(&inf->recovery_pending);
spin_unlock(&inf->lock);
if (still_pending)
return 0;
if (cancel)
cancel_delayed_work_sync(&inf->recovery_dwork);
scoutfs_key_set_zeros(&key);
scoutfs_info(sb, "all lock clients recovered");
while ((snode = get_server_lock(inf, &key, NULL, true))) {
key = snode->key;
@@ -621,6 +669,14 @@ int scoutfs_lock_server_finished_recovery(struct super_block *sb)
return ret;
}
static void set_max_write_version(struct lock_server_info *inf, u64 new)
{
u64 old;
while (new > (old = atomic64_read(&inf->write_version)) &&
(atomic64_cmpxchg(&inf->write_version, old, new) != old));
}
/*
* We sent a lock recover request to the client when we received its
* greeting while in recovery. Here we instantiate all the locks it
@@ -632,61 +688,62 @@ int scoutfs_lock_server_recover_response(struct super_block *sb, u64 rid,
{
DECLARE_LOCK_SERVER_INFO(sb, inf);
struct client_lock_entry *existing;
struct client_lock_entry *c_ent;
struct client_lock_entry *clent;
struct server_lock_node *snode;
struct scoutfs_key key;
int ret = 0;
int i;
/* client must be in recovery */
if (!scoutfs_recov_is_pending(sb, rid, SCOUTFS_RECOV_LOCKS)) {
spin_lock(&inf->lock);
if (!scoutfs_spbm_test(&inf->recovery_pending, rid))
ret = -EINVAL;
spin_unlock(&inf->lock);
if (ret)
goto out;
}
/* client has sent us all their locks */
if (nlr->nr == 0) {
scoutfs_server_recov_finish(sb, rid, SCOUTFS_RECOV_LOCKS);
ret = 0;
ret = finished_recovery(sb, rid, true);
goto out;
}
for (i = 0; i < le16_to_cpu(nlr->nr); i++) {
c_ent = kzalloc(sizeof(struct client_lock_entry), GFP_NOFS);
if (!c_ent) {
clent = kzalloc(sizeof(struct client_lock_entry), GFP_NOFS);
if (!clent) {
ret = -ENOMEM;
goto out;
}
INIT_LIST_HEAD(&c_ent->head);
c_ent->rid = rid;
c_ent->net_id = 0;
c_ent->mode = nlr->locks[i].new_mode;
INIT_LIST_HEAD(&clent->head);
clent->rid = rid;
clent->net_id = 0;
clent->mode = nlr->locks[i].new_mode;
snode = alloc_server_lock(inf, &nlr->locks[i].key);
if (snode == NULL) {
kfree(c_ent);
kfree(clent);
ret = -ENOMEM;
goto out;
}
existing = find_entry(snode, &snode->granted, rid);
if (existing) {
kfree(c_ent);
kfree(clent);
put_server_lock(inf, snode);
ret = -EEXIST;
goto out;
}
c_ent->snode = snode;
add_client_entry(snode, &snode->granted, c_ent);
scoutfs_tseq_add(&inf->tseq_tree, &c_ent->tseq_entry);
clent->snode = snode;
add_client_entry(snode, &snode->granted, clent);
scoutfs_tseq_add(&inf->tseq_tree, &clent->tseq_entry);
put_server_lock(inf, snode);
/* make sure next core seq is greater than all lock write seq */
scoutfs_server_set_seq_if_greater(sb,
le64_to_cpu(nlr->locks[i].write_seq));
/* make sure next write lock is greater than all recovered */
set_max_write_version(inf,
le64_to_cpu(nlr->locks[i].write_version));
}
/* send request for next batch of keys */
@@ -698,16 +755,102 @@ out:
return ret;
}
static int get_rid_and_put_ref(struct scoutfs_btree_item_ref *iref, u64 *rid)
{
int ret;
if (iref->val_len == 0) {
*rid = le64_to_cpu(iref->key->sklc_rid);
ret = 0;
} else {
ret = -EIO;
}
scoutfs_btree_put_iref(iref);
return ret;
}
/*
* This work executes if enough time passes without all of the clients
* finishing with recovery and canceling the work. We walk through the
* client records and find any that still have their recovery pending.
*/
static void scoutfs_lock_server_recovery_timeout(struct work_struct *work)
{
struct lock_server_info *inf = container_of(work,
struct lock_server_info,
recovery_dwork.work);
struct super_block *sb = inf->sb;
struct scoutfs_super_block *super = &SCOUTFS_SB(sb)->super;
SCOUTFS_BTREE_ITEM_REF(iref);
struct scoutfs_key key;
bool timed_out;
u64 rid;
int ret;
ret = scoutfs_server_hold_commit(sb);
if (ret)
goto out;
/* we enter recovery if there are any client records */
for (rid = 0; ; rid++) {
init_lock_clients_key(&key, rid);
ret = scoutfs_btree_next(sb, &super->lock_clients, &key, &iref);
if (ret == -ENOENT) {
ret = 0;
break;
}
if (ret == 0)
ret = get_rid_and_put_ref(&iref, &rid);
if (ret < 0)
break;
spin_lock(&inf->lock);
if (scoutfs_spbm_test(&inf->recovery_pending, rid)) {
scoutfs_spbm_clear(&inf->recovery_pending, rid);
timed_out = true;
} else {
timed_out = false;
}
spin_unlock(&inf->lock);
if (!timed_out)
continue;
scoutfs_err(sb, "client rid %016llx lock recovery timed out",
rid);
init_lock_clients_key(&key, rid);
ret = scoutfs_btree_delete(sb, inf->alloc, inf->wri,
&super->lock_clients, &key);
if (ret)
break;
}
ret = scoutfs_server_apply_commit(sb, ret);
out:
/* force processing all pending lock requests */
if (ret == 0)
ret = finished_recovery(sb, 0, false);
if (ret < 0) {
scoutfs_err(sb, "lock server saw err %d while timing out clients, shutting down", ret);
scoutfs_server_abort(sb);
}
}
/*
* A client is leaving the lock service. They aren't using locks and
* won't send any more requests. We tear down all the state we had for
* them. This can be called multiple times for a given client as their
* farewell is resent to new servers. It's OK to not find any state.
* If we fail to delete a persistent entry then we have to shut down and
* hope that the next server has more luck.
*/
int scoutfs_lock_server_farewell(struct super_block *sb, u64 rid)
{
DECLARE_LOCK_SERVER_INFO(sb, inf);
struct client_lock_entry *c_ent;
struct scoutfs_super_block *super = &SCOUTFS_SB(sb)->super;
struct client_lock_entry *clent;
struct client_lock_entry *tmp;
struct server_lock_node *snode;
struct scoutfs_key key;
@@ -715,7 +858,20 @@ int scoutfs_lock_server_farewell(struct super_block *sb, u64 rid)
bool freed;
int ret = 0;
mutex_lock(&inf->mutex);
init_lock_clients_key(&key, rid);
ret = scoutfs_btree_delete(sb, inf->alloc, inf->wri,
&super->lock_clients, &key);
mutex_unlock(&inf->mutex);
if (ret == -ENOENT) {
ret = 0;
goto out;
}
if (ret < 0)
goto out;
scoutfs_key_set_zeros(&key);
while ((snode = get_server_lock(inf, &key, NULL, true))) {
freed = false;
@@ -724,9 +880,9 @@ int scoutfs_lock_server_farewell(struct super_block *sb, u64 rid)
(list == &snode->requested) ? &snode->invalidated :
NULL) {
list_for_each_entry_safe(c_ent, tmp, list, head) {
if (c_ent->rid == rid) {
free_client_entry(inf, snode, c_ent);
list_for_each_entry_safe(clent, tmp, list, head) {
if (clent->rid == rid) {
free_client_entry(inf, snode, clent);
freed = true;
}
}
@@ -749,7 +905,7 @@ out:
if (ret < 0) {
scoutfs_err(sb, "lock server err %d during client rid %016llx farewell, shutting down",
ret, rid);
scoutfs_server_stop(sb);
scoutfs_server_abort(sb);
}
return ret;
@@ -787,35 +943,36 @@ static char *lock_on_list_string(u8 on_list)
static void lock_server_tseq_show(struct seq_file *m,
struct scoutfs_tseq_entry *ent)
{
struct client_lock_entry *c_ent = container_of(ent,
struct client_lock_entry *clent = container_of(ent,
struct client_lock_entry,
tseq_entry);
struct server_lock_node *snode = c_ent->snode;
struct server_lock_node *snode = clent->snode;
seq_printf(m, SK_FMT" %s %s rid %016llx net_id %llu\n",
SK_ARG(&snode->key), lock_mode_string(c_ent->mode),
lock_on_list_string(c_ent->on_list), c_ent->rid,
c_ent->net_id);
}
static void stats_tseq_show(struct seq_file *m, struct scoutfs_tseq_entry *ent)
{
struct server_lock_node *snode = container_of(ent, struct server_lock_node,
stats_tseq_entry);
seq_printf(m, SK_FMT" req %llu inv %llu rsp %llu gr %llu\n",
SK_ARG(&snode->key), snode->stats[SLT_REQUEST], snode->stats[SLT_INVALIDATE],
snode->stats[SLT_RESPONSE], snode->stats[SLT_GRANT]);
SK_ARG(&snode->key), lock_mode_string(clent->mode),
lock_on_list_string(clent->on_list), clent->rid,
clent->net_id);
}
/*
* Setup the lock server. This is called before networking can deliver
* requests.
* requests. If we find existing client records then we enter recovery.
* Lock request processing is deferred until recovery is resolved for
* all the existing clients, either they reconnect and replay locks or
* we time them out.
*/
int scoutfs_lock_server_setup(struct super_block *sb)
int scoutfs_lock_server_setup(struct super_block *sb,
struct scoutfs_alloc *alloc,
struct scoutfs_block_writer *wri, u64 max_vers)
{
struct scoutfs_sb_info *sbi = SCOUTFS_SB(sb);
struct scoutfs_super_block *super = &SCOUTFS_SB(sb)->super;
struct lock_server_info *inf;
SCOUTFS_BTREE_ITEM_REF(iref);
struct scoutfs_key key;
unsigned int nr;
u64 rid;
int ret;
inf = kzalloc(sizeof(struct lock_server_info), GFP_KERNEL);
if (!inf)
@@ -823,9 +980,15 @@ int scoutfs_lock_server_setup(struct super_block *sb)
inf->sb = sb;
spin_lock_init(&inf->lock);
mutex_init(&inf->mutex);
inf->locks_root = RB_ROOT;
scoutfs_spbm_init(&inf->recovery_pending);
INIT_DELAYED_WORK(&inf->recovery_dwork,
scoutfs_lock_server_recovery_timeout);
scoutfs_tseq_tree_init(&inf->tseq_tree, lock_server_tseq_show);
scoutfs_tseq_tree_init(&inf->stats_tseq_tree, stats_tseq_show);
inf->alloc = alloc;
inf->wri = wri;
atomic64_set(&inf->write_version, max_vers); /* inc_return gives +1 */
inf->tseq_dentry = scoutfs_tseq_create("server_locks", sbi->debug_root,
&inf->tseq_tree);
@@ -834,17 +997,38 @@ int scoutfs_lock_server_setup(struct super_block *sb)
return -ENOMEM;
}
inf->stats_tseq_dentry = scoutfs_tseq_create("server_lock_stats", sbi->debug_root,
&inf->stats_tseq_tree);
if (!inf->stats_tseq_dentry) {
debugfs_remove(inf->tseq_dentry);
kfree(inf);
return -ENOMEM;
}
sbi->lock_server_info = inf;
return 0;
/* we enter recovery if there are any client records */
nr = 0;
for (rid = 0; ; rid++) {
init_lock_clients_key(&key, rid);
ret = scoutfs_btree_next(sb, &super->lock_clients, &key, &iref);
if (ret == -ENOENT)
break;
if (ret == 0)
ret = get_rid_and_put_ref(&iref, &rid);
if (ret < 0)
goto out;
ret = scoutfs_spbm_set(&inf->recovery_pending, rid);
if (ret)
goto out;
nr++;
if (rid == U64_MAX)
break;
}
ret = 0;
if (nr) {
schedule_delayed_work(&inf->recovery_dwork,
msecs_to_jiffies(LOCK_SERVER_RECOVERY_MS));
scoutfs_info(sb, "waiting for %u lock clients to recover", nr);
}
out:
return ret;
}
/*
@@ -857,13 +1041,14 @@ void scoutfs_lock_server_destroy(struct super_block *sb)
DECLARE_LOCK_SERVER_INFO(sb, inf);
struct server_lock_node *snode;
struct server_lock_node *stmp;
struct client_lock_entry *c_ent;
struct client_lock_entry *clent;
struct client_lock_entry *ctmp;
LIST_HEAD(list);
if (inf) {
cancel_delayed_work_sync(&inf->recovery_dwork);
debugfs_remove(inf->tseq_dentry);
debugfs_remove(inf->stats_tseq_dentry);
rbtree_postorder_for_each_entry_safe(snode, stmp,
&inf->locks_root, node) {
@@ -873,14 +1058,16 @@ void scoutfs_lock_server_destroy(struct super_block *sb)
list_splice_init(&snode->invalidated, &list);
mutex_lock(&snode->mutex);
list_for_each_entry_safe(c_ent, ctmp, &list, head) {
free_client_entry(inf, snode, c_ent);
list_for_each_entry_safe(clent, ctmp, &list, head) {
free_client_entry(inf, snode, clent);
}
mutex_unlock(&snode->mutex);
kfree(snode);
}
scoutfs_spbm_destroy(&inf->recovery_pending);
kfree(inf);
sbi->lock_server_info = NULL;
}

View File

@@ -3,15 +3,17 @@
int scoutfs_lock_server_recover_response(struct super_block *sb, u64 rid,
struct scoutfs_net_lock_recover *nlr);
int scoutfs_lock_server_finished_recovery(struct super_block *sb);
int scoutfs_lock_server_request(struct super_block *sb, u64 rid,
u64 net_id, struct scoutfs_net_lock *nl);
int scoutfs_lock_server_greeting(struct super_block *sb, u64 rid);
int scoutfs_lock_server_greeting(struct super_block *sb, u64 rid,
bool should_exist);
int scoutfs_lock_server_response(struct super_block *sb, u64 rid,
struct scoutfs_net_lock *nl);
int scoutfs_lock_server_farewell(struct super_block *sb, u64 rid);
int scoutfs_lock_server_setup(struct super_block *sb);
int scoutfs_lock_server_setup(struct super_block *sb,
struct scoutfs_alloc *alloc,
struct scoutfs_block_writer *wri, u64 max_vers);
void scoutfs_lock_server_destroy(struct super_block *sb);
#endif

View File

@@ -4,7 +4,6 @@
#include <linux/bitops.h>
#include "key.h"
#include "counters.h"
#include "super.h"
void __printf(4, 5) scoutfs_msg(struct super_block *sb, const char *prefix,
const char *str, const char *fmt, ...);
@@ -24,9 +23,6 @@ do { \
#define scoutfs_info(sb, fmt, args...) \
scoutfs_msg_check(sb, KERN_INFO, "", fmt, ##args)
#define scoutfs_tprintk(sb, fmt, args...) \
trace_printk(SCSBF " " fmt "\n", SCSB_ARGS(sb), ##args);
#define scoutfs_bug_on(sb, cond, fmt, args...) \
do { \
if (cond) { \

View File

@@ -30,7 +30,6 @@
#include "net.h"
#include "endian_swap.h"
#include "tseq.h"
#include "fence.h"
/*
* scoutfs networking delivers requests and responses between nodes.
@@ -331,9 +330,6 @@ static int submit_send(struct super_block *sb,
WARN_ON_ONCE(id == 0 && (flags & SCOUTFS_NET_FLAG_RESPONSE)))
return -EINVAL;
if (scoutfs_forcing_unmount(sb))
return -EIO;
msend = kmalloc(offsetof(struct message_send,
nh.data[data_len]), GFP_NOFS);
if (!msend)
@@ -355,7 +351,6 @@ static int submit_send(struct super_block *sb,
}
if (rid != 0) {
spin_unlock(&conn->lock);
kfree(msend);
return -ENOTCONN;
}
}
@@ -425,16 +420,6 @@ static int process_request(struct scoutfs_net_connection *conn,
mrecv->nh.data, le16_to_cpu(mrecv->nh.data_len));
}
static int call_resp_func(struct super_block *sb, struct scoutfs_net_connection *conn,
scoutfs_net_response_t resp_func, void *resp_data,
void *resp, unsigned int resp_len, int error)
{
if (resp_func)
return resp_func(sb, conn, resp, resp_len, error, resp_data);
else
return 0;
}
/*
* An incoming response finds the queued request and calls its response
* function. The response function for a given request will only be
@@ -449,6 +434,7 @@ static int process_response(struct scoutfs_net_connection *conn,
struct message_send *msend;
scoutfs_net_response_t resp_func = NULL;
void *resp_data;
int ret = 0;
spin_lock(&conn->lock);
@@ -463,8 +449,11 @@ static int process_response(struct scoutfs_net_connection *conn,
spin_unlock(&conn->lock);
return call_resp_func(sb, conn, resp_func, resp_data, mrecv->nh.data,
le16_to_cpu(mrecv->nh.data_len), net_err_to_host(mrecv->nh.error));
if (resp_func)
ret = resp_func(sb, conn, mrecv->nh.data,
le16_to_cpu(mrecv->nh.data_len),
net_err_to_host(mrecv->nh.error), resp_data);
return ret;
}
/*
@@ -630,6 +619,8 @@ static void scoutfs_net_recv_worker(struct work_struct *work)
break;
}
trace_scoutfs_recv_clock_sync(nh.clock_sync_id);
data_len = le16_to_cpu(nh.data_len);
scoutfs_inc_counter(sb, net_recv_messages);
@@ -676,15 +667,8 @@ static void scoutfs_net_recv_worker(struct work_struct *work)
scoutfs_tseq_add(&ninf->msg_tseq_tree, &mrecv->tseq_entry);
/*
* Initial received greetings are processed
* synchronously before any other incoming messages.
*
* Incoming requests or responses to the lock client are
* called synchronously to avoid reordering.
*/
if (nh.cmd == SCOUTFS_NET_CMD_GREETING ||
(nh.cmd == SCOUTFS_NET_CMD_LOCK && !conn->listening_conn))
/* synchronously process greeting before next recvmsg */
if (nh.cmd == SCOUTFS_NET_CMD_GREETING)
scoutfs_net_proc_worker(&mrecv->proc_work);
else
queue_work(conn->workq, &mrecv->proc_work);
@@ -784,6 +768,9 @@ static void scoutfs_net_send_worker(struct work_struct *work)
trace_scoutfs_net_send_message(sb, &conn->sockname,
&conn->peername, &msend->nh);
msend->nh.clock_sync_id = scoutfs_clock_sync_id();
trace_scoutfs_send_clock_sync(msend->nh.clock_sync_id);
ret = sendmsg_full(conn->sock, &msend->nh, len);
spin_lock(&conn->lock);
@@ -836,9 +823,11 @@ static void scoutfs_net_destroy_worker(struct work_struct *work)
if (conn->listening_conn && conn->notify_down)
conn->notify_down(sb, conn, conn->info, conn->rid);
/* free all messages, refactor and complete for forced unmount? */
list_splice_init(&conn->resend_queue, &conn->send_queue);
list_for_each_entry_safe(msend, tmp, &conn->send_queue, head)
list_for_each_entry_safe(msend, tmp, &conn->send_queue, head) {
free_msend(ninf, msend);
}
/* accepted sockets are removed from their listener's list */
if (conn->listening_conn) {
@@ -868,31 +857,13 @@ static void destroy_conn(struct scoutfs_net_connection *conn)
}
/*
* By default, TCP would maintain a connection to an unresponsive peer
* for a very long time indeed. We can't do that because quorum
* members will only participate in an election when they don't have a
* healthy connection to a server. We use the KEEPALIVE* and
* TCP_USER_TIMEOUT options to ensure that we'll break an unresponsive
* connection and return to the quorum and client connection paths to
* try and establish a new connection to an active server.
*
* The TCP_KEEP* and TCP_USER_TIMEOUT option interaction is subtle.
* TCP_USER_TIMEOUT only applies if there is unacked written data in the
* send queue. It doesn't work if the connection is idle. Adding
* keepalice probes with user_timeout set changes how the keepalive
* timeout is calculated. CNT no longer matters. Each time
* additional probes (not the first) are sent the user timeout is
* checked against the last time data was received. If none of the
* keepalives are responded to then eventually the user timeout applies.
*
* Given all this, we start with the overall unresponsive timeout. Then
* we set the probes to start sending towards the end of the timeout.
* We give it a few tries for a successful response before the timeout
* elapses during the probe timer processing after the unsuccessful
* probes.
* Have a pretty aggressive keepalive timeout of around 10 seconds. The
* TCP keepalives are being processed out of task context so they should
* be responsive even when mounts are under load.
*/
#define UNRESPONSIVE_TIMEOUT_SECS 10
#define UNRESPONSIVE_PROBES 3
#define KEEPCNT 3
#define KEEPIDLE 7
#define KEEPINTVL 1
static int sock_opts_and_names(struct scoutfs_net_connection *conn,
struct socket *sock)
{
@@ -901,7 +872,7 @@ static int sock_opts_and_names(struct scoutfs_net_connection *conn,
int optval;
int ret;
/* we use a keepalive timeout instead of send timeout */
/* but use a keepalive timeout instead of send timeout */
tv.tv_sec = 0;
tv.tv_usec = 0;
ret = kernel_setsockopt(sock, SOL_SOCKET, SO_SNDTIMEO,
@@ -909,32 +880,24 @@ static int sock_opts_and_names(struct scoutfs_net_connection *conn,
if (ret)
goto out;
/* not checked when user_timeout != 0, but for clarity */
optval = UNRESPONSIVE_PROBES;
optval = KEEPCNT;
ret = kernel_setsockopt(sock, SOL_TCP, TCP_KEEPCNT,
(char *)&optval, sizeof(optval));
if (ret)
goto out;
BUILD_BUG_ON(UNRESPONSIVE_PROBES >= UNRESPONSIVE_TIMEOUT_SECS);
optval = UNRESPONSIVE_TIMEOUT_SECS - (UNRESPONSIVE_PROBES);
optval = KEEPIDLE;
ret = kernel_setsockopt(sock, SOL_TCP, TCP_KEEPIDLE,
(char *)&optval, sizeof(optval));
if (ret)
goto out;
optval = 1;
optval = KEEPINTVL;
ret = kernel_setsockopt(sock, SOL_TCP, TCP_KEEPINTVL,
(char *)&optval, sizeof(optval));
if (ret)
goto out;
optval = UNRESPONSIVE_TIMEOUT_SECS * MSEC_PER_SEC;
ret = kernel_setsockopt(sock, SOL_TCP, TCP_USER_TIMEOUT,
(char *)&optval, sizeof(optval));
if (ret)
goto out;
optval = 1;
ret = kernel_setsockopt(sock, SOL_SOCKET, SO_KEEPALIVE,
(char *)&optval, sizeof(optval));
@@ -962,8 +925,6 @@ static int sock_opts_and_names(struct scoutfs_net_connection *conn,
ret = -EAFNOSUPPORT;
if (ret)
goto out;
conn->last_peername = conn->peername;
out:
return ret;
}
@@ -983,6 +944,7 @@ static void scoutfs_net_listen_worker(struct work_struct *work)
struct scoutfs_net_connection *acc_conn;
DECLARE_WAIT_QUEUE_HEAD(waitq);
struct socket *acc_sock;
LIST_HEAD(conn_list);
int ret;
trace_scoutfs_net_listen_work_enter(sb, 0, 0);
@@ -992,8 +954,6 @@ static void scoutfs_net_listen_worker(struct work_struct *work)
if (ret < 0)
break;
acc_sock->sk->sk_allocation = GFP_NOFS;
/* inherit accepted request funcs from listening conn */
acc_conn = scoutfs_net_alloc_conn(sb, conn->notify_up,
conn->notify_down,
@@ -1056,8 +1016,6 @@ static void scoutfs_net_connect_worker(struct work_struct *work)
if (ret)
goto out;
sock->sk->sk_allocation = GFP_NOFS;
/* caller specified connect timeout */
tv.tv_sec = conn->connect_timeout_ms / MSEC_PER_SEC;
tv.tv_usec = (conn->connect_timeout_ms % MSEC_PER_SEC) * USEC_PER_MSEC;
@@ -1131,11 +1089,9 @@ static void scoutfs_net_shutdown_worker(struct work_struct *work)
struct net_info *ninf = SCOUTFS_SB(sb)->net_info;
struct scoutfs_net_connection *listener;
struct scoutfs_net_connection *acc_conn;
scoutfs_net_response_t resp_func;
struct message_send *msend;
struct message_send *tmp;
unsigned long delay;
void *resp_data;
trace_scoutfs_net_shutdown_work_enter(sb, 0, 0);
trace_scoutfs_conn_shutdown_start(conn);
@@ -1181,30 +1137,6 @@ static void scoutfs_net_shutdown_worker(struct work_struct *work)
/* and wait for accepted conn shutdown work to finish */
wait_event(conn->waitq, empty_accepted_list(conn));
/*
* Forced unmount will cause net submit to fail once it's
* started and it calls shutdown to interrupt any previous
* senders waiting for a response. The response callbacks can
* do quite a lot of work so we're careful to call them outside
* the lock.
*/
if (scoutfs_forcing_unmount(sb)) {
spin_lock(&conn->lock);
list_splice_tail_init(&conn->send_queue, &conn->resend_queue);
while ((msend = list_first_entry_or_null(&conn->resend_queue,
struct message_send, head))) {
resp_func = msend->resp_func;
resp_data = msend->resp_data;
free_msend(ninf, msend);
spin_unlock(&conn->lock);
call_resp_func(sb, conn, resp_func, resp_data, NULL, 0, -ECONNABORTED);
spin_lock(&conn->lock);
}
spin_unlock(&conn->lock);
}
spin_lock(&conn->lock);
/* greetings aren't resent across sockets */
@@ -1274,7 +1206,6 @@ static void scoutfs_net_reconn_free_worker(struct work_struct *work)
unsigned long now = jiffies;
unsigned long deadline = 0;
bool requeue = false;
int ret;
trace_scoutfs_net_reconn_free_work_enter(sb, 0, 0);
@@ -1288,18 +1219,10 @@ restart:
time_after_eq(now, acc->reconn_deadline))) {
set_conn_fl(acc, reconn_freeing);
spin_unlock(&conn->lock);
if (!test_conn_fl(conn, shutting_down)) {
scoutfs_info(sb, "client "SIN_FMT" reconnect timed out, fencing",
SIN_ARG(&acc->last_peername));
ret = scoutfs_fence_start(sb, acc->rid,
acc->last_peername.sin_addr.s_addr,
SCOUTFS_FENCE_CLIENT_RECONNECT);
if (ret) {
scoutfs_err(sb, "client fence returned err %d, shutting down server",
ret);
scoutfs_server_stop(sb);
}
}
if (!test_conn_fl(conn, shutting_down))
scoutfs_info(sb, "client timed out "SIN_FMT" -> "SIN_FMT", can not reconnect",
SIN_ARG(&acc->sockname),
SIN_ARG(&acc->peername));
destroy_conn(acc);
goto restart;
}
@@ -1346,12 +1269,10 @@ scoutfs_net_alloc_conn(struct super_block *sb,
if (!conn)
return NULL;
if (info_size) {
conn->info = kzalloc(info_size, GFP_NOFS);
if (!conn->info) {
kfree(conn);
return NULL;
}
conn->info = kzalloc(info_size, GFP_NOFS);
if (!conn->info) {
kfree(conn);
return NULL;
}
conn->workq = alloc_workqueue("scoutfs_net_%s",
@@ -1372,7 +1293,6 @@ scoutfs_net_alloc_conn(struct super_block *sb,
init_waitqueue_head(&conn->waitq);
conn->sockname.sin_family = AF_INET;
conn->peername.sin_family = AF_INET;
conn->last_peername.sin_family = AF_INET;
INIT_LIST_HEAD(&conn->accepted_head);
INIT_LIST_HEAD(&conn->accepted_list);
conn->next_send_seq = 1;
@@ -1457,8 +1377,6 @@ int scoutfs_net_bind(struct super_block *sb,
if (ret)
goto out;
sock->sk->sk_allocation = GFP_NOFS;
optval = 1;
ret = kernel_setsockopt(sock, SOL_SOCKET, SO_REUSEADDR,
(char *)&optval, sizeof(optval));
@@ -1541,7 +1459,8 @@ int scoutfs_net_connect(struct super_block *sb,
struct scoutfs_net_connection *conn,
struct sockaddr_in *sin, unsigned long timeout_ms)
{
int ret = 0;
int error = 0;
int ret;
spin_lock(&conn->lock);
conn->connect_sin = *sin;
@@ -1549,8 +1468,10 @@ int scoutfs_net_connect(struct super_block *sb,
spin_unlock(&conn->lock);
queue_work(conn->workq, &conn->connect_work);
wait_event(conn->waitq, connect_result(conn, &ret));
return ret;
ret = wait_event_interruptible(conn->waitq,
connect_result(conn, &error));
return ret ?: error;
}
static void set_valid_greeting(struct scoutfs_net_connection *conn)
@@ -1625,8 +1546,9 @@ void scoutfs_net_client_greeting(struct super_block *sb,
* response and they can disconnect cleanly.
*
* At this point our connection is idle except for send submissions and
* shutdown being queued. We have exclusive access to the previous conn
* once it's shutdown and we set _freeing.
* shutdown being queued. Once we shut down a We completely own a We
* have exclusive access to a previous conn once its shutdown and we set
* _freeing.
*/
void scoutfs_net_server_greeting(struct super_block *sb,
struct scoutfs_net_connection *conn,
@@ -1686,10 +1608,10 @@ restart:
conn->next_send_id = reconn->next_send_id;
atomic64_set(&conn->recv_seq, atomic64_read(&reconn->recv_seq));
/* reconn should be idle while in reconn_wait */
/* greeting response/ack will be on conn send queue */
BUG_ON(!list_empty(&reconn->send_queue));
/* queued greeting response is racing, can be in send or resend queue */
list_splice_tail_init(&reconn->resend_queue, &conn->resend_queue);
BUG_ON(!list_empty(&conn->resend_queue));
list_splice_init(&reconn->resend_queue, &conn->resend_queue);
/* new conn info is unused, swap, old won't call down */
swap(conn->info, reconn->info);
@@ -1781,6 +1703,23 @@ int scoutfs_net_response_node(struct super_block *sb,
NULL, NULL, NULL);
}
/*
* The response function that was submitted with the request is not
* called if the request is canceled here.
*/
void scoutfs_net_cancel_request(struct super_block *sb,
struct scoutfs_net_connection *conn,
u8 cmd, u64 id)
{
struct message_send *msend;
spin_lock(&conn->lock);
msend = find_request(conn, cmd, id);
if (msend)
complete_send(conn, msend);
spin_unlock(&conn->lock);
}
struct sync_request_completion {
struct completion comp;
void *resp;
@@ -1836,10 +1775,11 @@ int scoutfs_net_sync_request(struct super_block *sb,
ret = scoutfs_net_submit_request(sb, conn, cmd, arg, arg_len,
sync_response, &sreq, &id);
if (ret == 0) {
wait_for_completion(&sreq.comp);
ret = wait_for_completion_interruptible(&sreq.comp);
if (ret == -ERESTARTSYS)
scoutfs_net_cancel_request(sb, conn, cmd, id);
else
ret = sreq.error;
}
return ret;
}

View File

@@ -49,7 +49,6 @@ struct scoutfs_net_connection {
u64 greeting_id;
struct sockaddr_in sockname;
struct sockaddr_in peername;
struct sockaddr_in last_peername;
struct list_head accepted_head;
struct scoutfs_net_connection *listening_conn;
@@ -91,23 +90,19 @@ enum conn_flags {
#define SIN_ARG(sin) sin, be16_to_cpu((sin)->sin_port)
static inline void scoutfs_addr_to_sin(struct sockaddr_in *sin,
union scoutfs_inet_addr *addr)
struct scoutfs_inet_addr *addr)
{
BUG_ON(addr->v4.family != cpu_to_le16(SCOUTFS_AF_IPV4));
sin->sin_family = AF_INET;
sin->sin_addr.s_addr = cpu_to_be32(le32_to_cpu(addr->v4.addr));
sin->sin_port = cpu_to_be16(le16_to_cpu(addr->v4.port));
sin->sin_addr.s_addr = cpu_to_be32(le32_to_cpu(addr->addr));
sin->sin_port = cpu_to_be16(le16_to_cpu(addr->port));
}
static inline void scoutfs_sin_to_addr(union scoutfs_inet_addr *addr, struct sockaddr_in *sin)
static inline void scoutfs_addr_from_sin(struct scoutfs_inet_addr *addr,
struct sockaddr_in *sin)
{
BUG_ON(sin->sin_family != AF_INET);
memset(addr, 0, sizeof(union scoutfs_inet_addr));
addr->v4.family = cpu_to_le16(SCOUTFS_AF_IPV4);
addr->v4.addr = be32_to_le32(sin->sin_addr.s_addr);
addr->v4.port = be16_to_le16(sin->sin_port);
addr->addr = be32_to_le32(sin->sin_addr.s_addr);
addr->port = be16_to_le16(sin->sin_port);
memset(addr->__pad, 0, sizeof(addr->__pad));
}
struct scoutfs_net_connection *
@@ -134,6 +129,9 @@ int scoutfs_net_submit_request_node(struct super_block *sb,
u64 rid, u8 cmd, void *arg, u16 arg_len,
scoutfs_net_response_t resp_func,
void *resp_data, u64 *id_ret);
void scoutfs_net_cancel_request(struct super_block *sb,
struct scoutfs_net_connection *conn,
u8 cmd, u64 id);
int scoutfs_net_sync_request(struct super_block *sb,
struct scoutfs_net_connection *conn,
u8 cmd, void *arg, unsigned arg_len,

View File

@@ -1,889 +0,0 @@
/*
* Copyright (C) 2021 Versity Software, Inc. All rights reserved.
*
* This program is free software; you can redistribute it and/or
* modify it under the terms of the GNU General Public
* License v2 as published by the Free Software Foundation.
*
* This program is distributed in the hope that it will be useful,
* but WITHOUT ANY WARRANTY; without even the implied warranty of
* MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU
* General Public License for more details.
*/
#include <linux/kernel.h>
#include <linux/fs.h>
#include <linux/slab.h>
#include <linux/sched.h>
#include <linux/rhashtable.h>
#include <linux/rcupdate.h>
#include "format.h"
#include "counters.h"
#include "cmp.h"
#include "inode.h"
#include "client.h"
#include "server.h"
#include "omap.h"
#include "recov.h"
#include "scoutfs_trace.h"
/*
* As a client removes an inode from its cache with an nlink of 0 it
* needs to decide if it is the last client using the inode and should
* fully delete all the inode's items. It needs to know if other mounts
* still have the inode in use.
*
* We need a way to communicate between mounts that an inode is in use.
* We don't want to pay the synchronous per-file locking round trip
* costs associated with per-inode open locks that you'd typically see
* in systems to solve this problem. The first prototypes of this
* tracked open file handles so this was coined the open map, though it
* now tracks cached inodes.
*
* Clients maintain bitmaps that cover groups of inodes. As inodes
* enter the cache their bit is set and as the inode is evicted the bit
* is cleared. As deletion is attempted, either by scanning orphans or
* evicting an inode with an nlink of 0, messages are sent around the
* cluster to get the current bitmaps for that inode's group from all
* active mounts. If the inode's bit is clear then it can be deleted.
*
* This layer maintains a list of client rids to send messages to. The
* server calls us as clients enter and leave the cluster. We can't
* process requests until all clients are present as a server starts up
* so we hook into recovery and delay processing until all previously
* existing clients are recovered or fenced.
*/
struct omap_rid_list {
int nr_rids;
struct list_head head;
};
struct omap_rid_entry {
struct list_head head;
u64 rid;
};
struct omap_info {
/* client */
struct rhashtable group_ht;
/* server */
struct rhashtable req_ht;
struct llist_head requests;
spinlock_t lock;
struct omap_rid_list rids;
atomic64_t next_req_id;
};
#define DECLARE_OMAP_INFO(sb, name) \
struct omap_info *name = SCOUTFS_SB(sb)->omap_info
/*
* The presence of an inode in the inode sets its bit in the lock
* group's bitmap.
*
* We don't want to add additional global synchronization of inode cache
* maintenance so these are tracked in an rcu hash table. Once their
* total reaches zero they're removed from the hash and queued for
* freeing and readers should ignore them.
*/
struct omap_group {
struct super_block *sb;
struct rhash_head ht_head;
struct rcu_head rcu;
u64 nr;
spinlock_t lock;
unsigned int total;
__le64 bits[SCOUTFS_OPEN_INO_MAP_LE64S];
};
#define trace_group(sb, which, group, bit_nr) \
do { \
__typeof__(group) _grp = (group); \
__typeof__(bit_nr) _nr = (bit_nr); \
\
trace_scoutfs_omap_group_##which(sb, _grp, _grp->nr, _grp->total, _nr); \
} while (0)
/*
* Each request is initialized with the rids of currently mounted
* clients. As each responds we remove their rid and send the response
* once everyone has contributed.
*
* The request frequency will typically be low, but in a mass rm -rf
* load we will see O(groups * clients) messages flying around.
*/
struct omap_request {
struct llist_node llnode;
struct rhash_head ht_head;
struct rcu_head rcu;
spinlock_t lock;
u64 client_rid;
u64 client_id;
struct omap_rid_list rids;
struct scoutfs_open_ino_map map;
};
static inline void init_rid_list(struct omap_rid_list *list)
{
INIT_LIST_HEAD(&list->head);
list->nr_rids = 0;
}
/*
* Negative searches almost never happen.
*/
static struct omap_rid_entry *find_rid(struct omap_rid_list *list, u64 rid)
{
struct omap_rid_entry *entry;
list_for_each_entry(entry, &list->head, head) {
if (rid == entry->rid)
return entry;
}
return NULL;
}
static int free_rid(struct omap_rid_list *list, struct omap_rid_entry *entry)
{
int nr;
list_del(&entry->head);
nr = --list->nr_rids;
kfree(entry);
return nr;
}
static void free_rid_list(struct omap_rid_list *list)
{
struct omap_rid_entry *entry;
struct omap_rid_entry *tmp;
list_for_each_entry_safe(entry, tmp, &list->head, head)
free_rid(list, entry);
}
static int copy_rids(struct omap_rid_list *to, struct omap_rid_list *from, spinlock_t *from_lock)
{
struct omap_rid_entry *entry;
struct omap_rid_entry *src;
struct omap_rid_entry *dst;
int nr;
spin_lock(from_lock);
while (to->nr_rids != from->nr_rids) {
nr = from->nr_rids;
spin_unlock(from_lock);
while (to->nr_rids < nr) {
entry = kmalloc(sizeof(struct omap_rid_entry), GFP_NOFS);
if (!entry)
return -ENOMEM;
list_add_tail(&entry->head, &to->head);
to->nr_rids++;
}
while (to->nr_rids > nr) {
entry = list_first_entry(&to->head, struct omap_rid_entry, head);
list_del(&entry->head);
kfree(entry);
to->nr_rids--;
}
spin_lock(from_lock);
}
dst = list_first_entry(&to->head, struct omap_rid_entry, head);
list_for_each_entry(src, &from->head, head) {
dst->rid = src->rid;
dst = list_next_entry(dst, head);
}
spin_unlock(from_lock);
return 0;
}
static void free_rids(struct omap_rid_list *list)
{
struct omap_rid_entry *entry;
struct omap_rid_entry *tmp;
list_for_each_entry_safe(entry, tmp, &list->head, head) {
list_del(&entry->head);
kfree(entry);
}
}
void scoutfs_omap_calc_group_nrs(u64 ino, u64 *group_nr, int *bit_nr)
{
*group_nr = ino >> SCOUTFS_OPEN_INO_MAP_SHIFT;
*bit_nr = ino & SCOUTFS_OPEN_INO_MAP_MASK;
}
static struct omap_group *alloc_group(struct super_block *sb, u64 group_nr)
{
struct omap_group *group;
group = kzalloc(sizeof(struct omap_group), GFP_NOFS);
if (group) {
group->sb = sb;
group->nr = group_nr;
spin_lock_init(&group->lock);
trace_group(sb, alloc, group, -1);
}
return group;
}
static void free_group(struct super_block *sb, struct omap_group *group)
{
trace_group(sb, free, group, -1);
kfree(group);
}
static void free_group_rcu(struct rcu_head *rcu)
{
struct omap_group *group = container_of(rcu, struct omap_group, rcu);
free_group(group->sb, group);
}
static const struct rhashtable_params group_ht_params = {
.key_len = member_sizeof(struct omap_group, nr),
.key_offset = offsetof(struct omap_group, nr),
.head_offset = offsetof(struct omap_group, ht_head),
};
/*
* Track an cached inode in its group. Our set can be racing with a
* final clear that removes the group from the hash, sets total to
* UINT_MAX, and calls rcu free. We can retry until the dead group is
* no longer visible in the hash table and we can insert a new allocated
* group.
*
* The caller must ensure that the bit is clear, -EEXIST will be
* returned otherwise.
*/
int scoutfs_omap_set(struct super_block *sb, u64 ino)
{
DECLARE_OMAP_INFO(sb, ominf);
struct omap_group *group;
u64 group_nr;
int bit_nr;
bool found;
int ret = 0;
scoutfs_omap_calc_group_nrs(ino, &group_nr, &bit_nr);
retry:
found = false;
rcu_read_lock();
group = rhashtable_lookup(&ominf->group_ht, &group_nr, group_ht_params);
if (group) {
spin_lock(&group->lock);
if (group->total < UINT_MAX) {
found = true;
if (WARN_ON_ONCE(test_and_set_bit_le(bit_nr, group->bits)))
ret = -EEXIST;
else
group->total++;
}
trace_group(sb, inc, group, bit_nr);
spin_unlock(&group->lock);
}
rcu_read_unlock();
if (!found) {
group = alloc_group(sb, group_nr);
if (group) {
ret = rhashtable_lookup_insert_fast(&ominf->group_ht, &group->ht_head,
group_ht_params);
if (ret < 0)
free_group(sb, group);
if (ret == -EEXIST)
ret = 0;
if (ret == -EBUSY) {
/* wait for rehash to finish */
synchronize_rcu();
ret = 0;
}
if (ret == 0)
goto retry;
} else {
ret = -ENOMEM;
}
}
return ret;
}
bool scoutfs_omap_test(struct super_block *sb, u64 ino)
{
DECLARE_OMAP_INFO(sb, ominf);
struct omap_group *group;
bool ret = false;
u64 group_nr;
int bit_nr;
scoutfs_omap_calc_group_nrs(ino, &group_nr, &bit_nr);
rcu_read_lock();
group = rhashtable_lookup(&ominf->group_ht, &group_nr, group_ht_params);
if (group) {
spin_lock(&group->lock);
ret = !!test_bit_le(bit_nr, group->bits);
spin_unlock(&group->lock);
}
rcu_read_unlock();
return ret;
}
/*
* Clear a previously set ino bit. Trying to clear a bit that's already
* clear implies imbalanced set/clear or bugs freeing groups. We only
* free groups here as the last clear drops the group's total to 0.
*/
void scoutfs_omap_clear(struct super_block *sb, u64 ino)
{
DECLARE_OMAP_INFO(sb, ominf);
struct omap_group *group;
u64 group_nr;
int bit_nr;
scoutfs_omap_calc_group_nrs(ino, &group_nr, &bit_nr);
rcu_read_lock();
group = rhashtable_lookup(&ominf->group_ht, &group_nr, group_ht_params);
if (group) {
spin_lock(&group->lock);
WARN_ON_ONCE(!test_bit_le(bit_nr, group->bits));
WARN_ON_ONCE(group->total == 0);
WARN_ON_ONCE(group->total == UINT_MAX);
if (test_and_clear_bit_le(bit_nr, group->bits)) {
if (--group->total == 0) {
group->total = UINT_MAX;
rhashtable_remove_fast(&ominf->group_ht, &group->ht_head,
group_ht_params);
call_rcu(&group->rcu, free_group_rcu);
}
}
trace_group(sb, dec, group, bit_nr);
spin_unlock(&group->lock);
}
rcu_read_unlock();
WARN_ON_ONCE(!group);
}
/*
* The server adds rids as it discovers clients. We add them to the
* list of rids to send map requests to.
*/
int scoutfs_omap_add_rid(struct super_block *sb, u64 rid)
{
DECLARE_OMAP_INFO(sb, ominf);
struct omap_rid_entry *entry;
struct omap_rid_entry *found;
entry = kmalloc(sizeof(struct omap_rid_entry), GFP_NOFS);
if (!entry)
return -ENOMEM;
spin_lock(&ominf->lock);
found = find_rid(&ominf->rids, rid);
if (!found) {
entry->rid = rid;
list_add_tail(&entry->head, &ominf->rids.head);
ominf->rids.nr_rids++;
}
spin_unlock(&ominf->lock);
if (found)
kfree(entry);
return 0;
}
static void free_req(struct omap_request *req)
{
free_rids(&req->rids);
kfree(req);
}
static void free_req_rcu(struct rcu_head *rcu)
{
struct omap_request *req = container_of(rcu, struct omap_request, rcu);
free_req(req);
}
static const struct rhashtable_params req_ht_params = {
.key_len = member_sizeof(struct omap_request, map.args.req_id),
.key_offset = offsetof(struct omap_request, map.args.req_id),
.head_offset = offsetof(struct omap_request, ht_head),
};
/*
* Remove a rid from all the pending requests. If it's the last rid we
* give the caller the details to send a response, they'll call back to
* keep removing. If their send fails they're going to shutdown the
* server so we can queue freeing the request as we give it to them.
*/
static int remove_rid_from_reqs(struct omap_info *ominf, u64 rid, u64 *resp_rid, u64 *resp_id,
struct scoutfs_open_ino_map *map)
{
struct omap_rid_entry *entry;
struct rhashtable_iter iter;
struct omap_request *req;
int ret = 0;
rhashtable_walk_enter(&ominf->req_ht, &iter);
rhashtable_walk_start(&iter);
for (;;) {
req = rhashtable_walk_next(&iter);
if (req == NULL)
break;
if (req == ERR_PTR(-EAGAIN))
continue;
spin_lock(&req->lock);
entry = find_rid(&req->rids, rid);
if (entry && free_rid(&req->rids, entry) == 0) {
*resp_rid = req->client_rid;
*resp_id = req->client_id;
memcpy(map, &req->map, sizeof(struct scoutfs_open_ino_map));
rhashtable_remove_fast(&ominf->req_ht, &req->ht_head, req_ht_params);
call_rcu(&req->rcu, free_req_rcu);
ret = 1;
}
spin_unlock(&req->lock);
if (ret > 0)
break;
}
rhashtable_walk_stop(&iter);
rhashtable_walk_exit(&iter);
if (ret <= 0) {
*resp_rid = 0;
*resp_id = 0;
}
return ret;
}
/*
* A client has been evicted. Remove its rid from the list and walk
* through all the pending requests and remove its rids, sending the
* response if it was the last rid waiting for a response.
*
* If this returns an error then the server will shut down.
*
* This can be called multiple times by different servers if there are
* errors reclaiming an evicted mount, so we allow asking to remove a
* rid that hasn't been added.
*/
int scoutfs_omap_remove_rid(struct super_block *sb, u64 rid)
{
DECLARE_OMAP_INFO(sb, ominf);
struct scoutfs_open_ino_map *map = NULL;
struct omap_rid_entry *entry;
u64 resp_rid = 0;
u64 resp_id = 0;
int ret;
spin_lock(&ominf->lock);
entry = find_rid(&ominf->rids, rid);
if (entry)
free_rid(&ominf->rids, entry);
spin_unlock(&ominf->lock);
if (!entry) {
ret = 0;
goto out;
}
map = kmalloc(sizeof(struct scoutfs_open_ino_map), GFP_NOFS);
if (!map) {
ret = -ENOMEM;
goto out;
}
/* remove the rid from all pending requests, sending responses if it was final */
for (;;) {
ret = remove_rid_from_reqs(ominf, rid, &resp_rid, &resp_id, map);
if (ret <= 0)
break;
ret = scoutfs_server_send_omap_response(sb, resp_rid, resp_id, map, 0);
if (ret < 0)
break;
}
out:
kfree(map);
return ret;
}
/*
* Handle a single incoming request in the server. This could have been
* delayed by recovery. This only returns an error if we couldn't send
* a processing error response to the client.
*/
static int handle_request(struct super_block *sb, struct omap_request *req)
{
DECLARE_OMAP_INFO(sb, ominf);
struct omap_rid_list priv_rids;
struct omap_rid_entry *entry;
int ret;
init_rid_list(&priv_rids);
ret = copy_rids(&priv_rids, &ominf->rids, &ominf->lock);
if (ret < 0)
goto out;
/* don't send a request to the client who originated this request */
entry = find_rid(&priv_rids, req->client_rid);
if (entry && free_rid(&priv_rids, entry) == 0) {
ret = scoutfs_server_send_omap_response(sb, req->client_rid, req->client_id,
&req->map, 0);
kfree(req);
req = NULL;
goto out;
}
/* this lock isn't needed but sparse gave warnings with conditional locking */
ret = copy_rids(&req->rids, &priv_rids, &ominf->lock);
if (ret < 0)
goto out;
do {
ret = rhashtable_insert_fast(&ominf->req_ht, &req->ht_head, req_ht_params);
if (ret == -EBUSY)
synchronize_rcu(); /* wait for rehash to finish */
} while (ret == -EBUSY);
if (ret < 0)
goto out;
/*
* We can start getting responses the moment we send the first response. After
* we send the last request the req can be freed.
*/
while ((entry = list_first_entry_or_null(&priv_rids.head, struct omap_rid_entry, head))) {
ret = scoutfs_server_send_omap_request(sb, entry->rid, &req->map.args);
if (ret < 0) {
rhashtable_remove_fast(&ominf->req_ht, &req->ht_head, req_ht_params);
goto out;
}
free_rid(&priv_rids, entry);
}
ret = 0;
out:
free_rids(&priv_rids);
if (ret < 0) {
ret = scoutfs_server_send_omap_response(sb, req->client_rid, req->client_id,
NULL, ret);
free_req(req);
}
return ret;
}
/*
* Handle all previously received omap requests from clients. Once
* we've finished recovery and can send requests to all clients we can
* handle all pending requests. The handling function frees the request
* and only returns an error if it couldn't send a response to the
* client.
*/
static int handle_requests(struct super_block *sb)
{
DECLARE_OMAP_INFO(sb, ominf);
struct llist_node *requests;
struct omap_request *req;
struct omap_request *tmp;
int ret;
int err;
if (scoutfs_recov_next_pending(sb, 0, SCOUTFS_RECOV_GREETING))
return 0;
ret = 0;
requests = llist_del_all(&ominf->requests);
llist_for_each_entry_safe(req, tmp, requests, llnode) {
err = handle_request(sb, req);
if (err < 0 && ret == 0)
ret = err;
}
return ret;
}
int scoutfs_omap_finished_recovery(struct super_block *sb)
{
return handle_requests(sb);
}
/*
* The server is receiving a request from a client for the bitmap of all
* open inodes around their ino. Queue it for processing which is
* typically immediate and inline but which can be deferred by recovery
* as the server first starts up.
*/
int scoutfs_omap_server_handle_request(struct super_block *sb, u64 rid, u64 id,
struct scoutfs_open_ino_map_args *args)
{
DECLARE_OMAP_INFO(sb, ominf);
struct omap_request *req;
req = kzalloc(sizeof(struct omap_request), GFP_NOFS);
if (req == NULL)
return -ENOMEM;
spin_lock_init(&req->lock);
req->client_rid = rid;
req->client_id = id;
init_rid_list(&req->rids);
req->map.args.group_nr = args->group_nr;
req->map.args.req_id = cpu_to_le64(atomic64_inc_return(&ominf->next_req_id));
llist_add(&req->llnode, &ominf->requests);
return handle_requests(sb);
}
/*
* The client is receiving a request from the server for its map for the
* given group. Look up the group and copy the bits to the map.
*
* The mount originating the request for this bitmap has the inode group
* write locked. We can't be adding links to any inodes in the group
* because that requires the lock. Inodes bits can be set and cleared
* while we're sampling the bitmap. These races are fine, they can't be
* adding cached inodes if nlink is 0 and we don't have the lock. If
* the caller is removing a set bit then they're about to try and delete
* the inode themselves and will first have to acquire the cluster lock
* themselves.
*/
int scoutfs_omap_client_handle_request(struct super_block *sb, u64 id,
struct scoutfs_open_ino_map_args *args)
{
DECLARE_OMAP_INFO(sb, ominf);
u64 group_nr = le64_to_cpu(args->group_nr);
struct scoutfs_open_ino_map *map;
struct omap_group *group;
bool copied = false;
int ret;
map = kmalloc(sizeof(struct scoutfs_open_ino_map), GFP_NOFS);
if (!map)
return -ENOMEM;
map->args = *args;
rcu_read_lock();
group = rhashtable_lookup(&ominf->group_ht, &group_nr, group_ht_params);
if (group) {
spin_lock(&group->lock);
trace_group(sb, request, group, -1);
if (group->total > 0 && group->total < UINT_MAX) {
memcpy(map->bits, group->bits, sizeof(map->bits));
copied = true;
}
spin_unlock(&group->lock);
}
rcu_read_unlock();
if (!copied)
memset(map->bits, 0, sizeof(map->bits));
ret = scoutfs_client_send_omap_response(sb, id, map);
kfree(map);
return ret;
}
/*
* The server has received an open ino map response from a client. Find
* the original request that it's serving, or in the response's map, and
* send a reply if this was the last response from a client we were
* waiting for.
*
* We can get responses for requests we're no longer tracking if, for
* example, sending to a client gets an error. We'll have already sent
* the response to the requesting client so we drop these responses on
* the floor.
*/
int scoutfs_omap_server_handle_response(struct super_block *sb, u64 rid,
struct scoutfs_open_ino_map *resp_map)
{
DECLARE_OMAP_INFO(sb, ominf);
struct scoutfs_open_ino_map *map;
struct omap_rid_entry *entry;
bool send_response = false;
struct omap_request *req;
u64 resp_rid;
u64 resp_id;
int ret;
map = kmalloc(sizeof(struct scoutfs_open_ino_map), GFP_NOFS);
if (!map) {
ret = -ENOMEM;
goto out;
}
rcu_read_lock();
req = rhashtable_lookup(&ominf->req_ht, &resp_map->args.req_id, req_ht_params);
if (req) {
spin_lock(&req->lock);
entry = find_rid(&req->rids, rid);
if (entry) {
bitmap_or((unsigned long *)req->map.bits, (unsigned long *)req->map.bits,
(unsigned long *)resp_map->bits, SCOUTFS_OPEN_INO_MAP_BITS);
if (free_rid(&req->rids, entry) == 0)
send_response = true;
}
spin_unlock(&req->lock);
if (send_response) {
resp_rid = req->client_rid;
resp_id = req->client_id;
memcpy(map, &req->map, sizeof(struct scoutfs_open_ino_map));
rhashtable_remove_fast(&ominf->req_ht, &req->ht_head, req_ht_params);
call_rcu(&req->rcu, free_req_rcu);
}
}
rcu_read_unlock();
if (send_response)
ret = scoutfs_server_send_omap_response(sb, resp_rid, resp_id, map, 0);
else
ret = 0;
kfree(map);
out:
return ret;
}
/*
* The server is shutting down. Free all the server state associated
* with ongoing request processing. Clients who still have requests
* pending will resend them to the next server.
*/
void scoutfs_omap_server_shutdown(struct super_block *sb)
{
DECLARE_OMAP_INFO(sb, ominf);
struct rhashtable_iter iter;
struct llist_node *requests;
struct omap_request *req;
struct omap_request *tmp;
rhashtable_walk_enter(&ominf->req_ht, &iter);
rhashtable_walk_start(&iter);
for (;;) {
req = rhashtable_walk_next(&iter);
if (req == NULL)
break;
if (req == ERR_PTR(-EAGAIN))
continue;
if (req->rids.nr_rids != 0) {
free_rids(&req->rids);
rhashtable_remove_fast(&ominf->req_ht, &req->ht_head, req_ht_params);
call_rcu(&req->rcu, free_req_rcu);
}
}
rhashtable_walk_stop(&iter);
rhashtable_walk_exit(&iter);
requests = llist_del_all(&ominf->requests);
llist_for_each_entry_safe(req, tmp, requests, llnode)
kfree(req);
spin_lock(&ominf->lock);
free_rid_list(&ominf->rids);
spin_unlock(&ominf->lock);
synchronize_rcu();
}
int scoutfs_omap_setup(struct super_block *sb)
{
struct scoutfs_sb_info *sbi = SCOUTFS_SB(sb);
struct omap_info *ominf;
int ret;
ominf = kzalloc(sizeof(struct omap_info), GFP_KERNEL);
if (!ominf) {
ret = -ENOMEM;
goto out;
}
ret = rhashtable_init(&ominf->group_ht, &group_ht_params);
if (ret < 0) {
kfree(ominf);
goto out;
}
ret = rhashtable_init(&ominf->req_ht, &req_ht_params);
if (ret < 0) {
rhashtable_destroy(&ominf->group_ht);
kfree(ominf);
goto out;
}
init_llist_head(&ominf->requests);
spin_lock_init(&ominf->lock);
init_rid_list(&ominf->rids);
atomic64_set(&ominf->next_req_id, 0);
sbi->omap_info = ominf;
ret = 0;
out:
return ret;
}
/*
* To get here the server must have shut down, freeing requests, and
* evict must have been called on all cached inodes so we can just
* synchronize all the pending group frees.
*/
void scoutfs_omap_destroy(struct super_block *sb)
{
DECLARE_OMAP_INFO(sb, ominf);
struct scoutfs_sb_info *sbi = SCOUTFS_SB(sb);
struct rhashtable_iter iter;
if (ominf) {
synchronize_rcu();
/* double check that all the groups deced to 0 and were freed */
rhashtable_walk_enter(&ominf->group_ht, &iter);
rhashtable_walk_start(&iter);
WARN_ON_ONCE(rhashtable_walk_peek(&iter) != NULL);
rhashtable_walk_stop(&iter);
rhashtable_walk_exit(&iter);
spin_lock(&ominf->lock);
free_rid_list(&ominf->rids);
spin_unlock(&ominf->lock);
rhashtable_destroy(&ominf->group_ht);
rhashtable_destroy(&ominf->req_ht);
kfree(ominf);
sbi->omap_info = NULL;
}
}

View File

@@ -1,23 +0,0 @@
#ifndef _SCOUTFS_OMAP_H_
#define _SCOUTFS_OMAP_H_
int scoutfs_omap_set(struct super_block *sb, u64 ino);
bool scoutfs_omap_test(struct super_block *sb, u64 ino);
void scoutfs_omap_clear(struct super_block *sb, u64 ino);
int scoutfs_omap_client_handle_request(struct super_block *sb, u64 id,
struct scoutfs_open_ino_map_args *args);
void scoutfs_omap_calc_group_nrs(u64 ino, u64 *group_nr, int *bit_nr);
int scoutfs_omap_add_rid(struct super_block *sb, u64 rid);
int scoutfs_omap_remove_rid(struct super_block *sb, u64 rid);
int scoutfs_omap_finished_recovery(struct super_block *sb);
int scoutfs_omap_server_handle_request(struct super_block *sb, u64 rid, u64 id,
struct scoutfs_open_ino_map_args *args);
int scoutfs_omap_server_handle_response(struct super_block *sb, u64 rid,
struct scoutfs_open_ino_map *resp_map);
void scoutfs_omap_server_shutdown(struct super_block *sb);
int scoutfs_omap_setup(struct super_block *sb);
void scoutfs_omap_destroy(struct super_block *sb);
#endif

View File

@@ -26,39 +26,62 @@
#include "msg.h"
#include "options.h"
#include "super.h"
#include "inode.h"
#include "alloc.h"
enum {
Opt_acl,
Opt_data_prealloc_blocks,
Opt_data_prealloc_contig_only,
Opt_metadev_path,
Opt_noacl,
Opt_orphan_scan_delay_ms,
Opt_quorum_slot_nr,
Opt_err,
};
static const match_table_t tokens = {
{Opt_acl, "acl"},
{Opt_data_prealloc_blocks, "data_prealloc_blocks=%s"},
{Opt_data_prealloc_contig_only, "data_prealloc_contig_only=%s"},
{Opt_server_addr, "server_addr=%s"},
{Opt_metadev_path, "metadev_path=%s"},
{Opt_noacl, "noacl"},
{Opt_orphan_scan_delay_ms, "orphan_scan_delay_ms=%s"},
{Opt_quorum_slot_nr, "quorum_slot_nr=%s"},
{Opt_err, NULL}
};
struct options_info {
seqlock_t seqlock;
struct scoutfs_mount_options opts;
struct scoutfs_sysfs_attrs sysfs_attrs;
struct options_sb_info {
struct dentry *debugfs_dir;
};
#define DECLARE_OPTIONS_INFO(sb, name) \
struct options_info *name = SCOUTFS_SB(sb)->options_info
u32 scoutfs_option_u32(struct super_block *sb, int token)
{
WARN_ON_ONCE(1);
return 0;
}
/* The caller's string is null terminted and can be clobbered */
static int parse_ipv4(struct super_block *sb, char *str,
struct sockaddr_in *sin)
{
unsigned long port = 0;
__be32 addr;
char *c;
int ret;
/* null term port, if specified */
c = strchr(str, ':');
if (c)
*c = '\0';
/* parse addr */
addr = in_aton(str);
if (ipv4_is_multicast(addr) || ipv4_is_lbcast(addr) ||
ipv4_is_zeronet(addr) ||
ipv4_is_local_multicast(addr)) {
scoutfs_err(sb, "invalid unicast ipv4 address: %s", str);
return -EINVAL;
}
/* parse port, if specified */
if (c) {
c++;
ret = kstrtoul(c, 0, &port);
if (ret != 0 || port == 0 || port >= U16_MAX) {
scoutfs_err(sb, "invalid port in ipv4 address: %s", c);
return -EINVAL;
}
}
sin->sin_family = AF_INET;
sin->sin_addr.s_addr = addr;
sin->sin_port = cpu_to_be16(port);
return 0;
}
static int parse_bdev_path(struct super_block *sb, substring_t *substr,
char **bdev_path_ret)
@@ -106,133 +129,46 @@ out:
return ret;
}
static void free_options(struct scoutfs_mount_options *opts)
{
kfree(opts->metadev_path);
}
#define MIN_ORPHAN_SCAN_DELAY_MS 100UL
#define DEFAULT_ORPHAN_SCAN_DELAY_MS (10 * MSEC_PER_SEC)
#define MAX_ORPHAN_SCAN_DELAY_MS (60 * MSEC_PER_SEC)
#define MIN_DATA_PREALLOC_BLOCKS 1ULL
#define MAX_DATA_PREALLOC_BLOCKS ((unsigned long long)SCOUTFS_BLOCK_SM_MAX)
static void init_default_options(struct scoutfs_mount_options *opts)
{
memset(opts, 0, sizeof(*opts));
opts->data_prealloc_blocks = SCOUTFS_DATA_PREALLOC_DEFAULT_BLOCKS;
opts->data_prealloc_contig_only = 1;
opts->quorum_slot_nr = -1;
opts->orphan_scan_delay_ms = -1;
}
/*
* Parse the option string into our options struct. This can allocate
* memory in the struct. The caller is responsible for always calling
* free_options() when the struct is destroyed, including when we return
* an error.
*/
static int parse_options(struct super_block *sb, char *options, struct scoutfs_mount_options *opts)
int scoutfs_parse_options(struct super_block *sb, char *options,
struct mount_options *parsed)
{
char ipstr[INET_ADDRSTRLEN + 1];
substring_t args[MAX_OPT_ARGS];
u64 nr64;
int nr;
int token;
char *p;
int ret;
/* Set defaults */
memset(parsed, 0, sizeof(*parsed));
while ((p = strsep(&options, ",")) != NULL) {
if (!*p)
continue;
token = match_token(p, tokens, args);
switch (token) {
case Opt_server_addr:
case Opt_acl:
sb->s_flags |= MS_POSIXACL;
break;
case Opt_data_prealloc_blocks:
ret = match_u64(args, &nr64);
if (ret < 0 ||
nr64 < MIN_DATA_PREALLOC_BLOCKS || nr64 > MAX_DATA_PREALLOC_BLOCKS) {
scoutfs_err(sb, "invalid data_prealloc_blocks option, must be between %llu and %llu",
MIN_DATA_PREALLOC_BLOCKS, MAX_DATA_PREALLOC_BLOCKS);
if (ret == 0)
ret = -EINVAL;
return ret;
}
opts->data_prealloc_blocks = nr64;
break;
case Opt_data_prealloc_contig_only:
ret = match_int(args, &nr);
if (ret < 0 || nr < 0 || nr > 1) {
scoutfs_err(sb, "invalid data_prealloc_contig_only option, bool must only be 0 or 1");
if (ret == 0)
ret = -EINVAL;
return ret;
}
opts->data_prealloc_contig_only = nr;
break;
case Opt_metadev_path:
ret = parse_bdev_path(sb, &args[0], &opts->metadev_path);
match_strlcpy(ipstr, args, ARRAY_SIZE(ipstr));
ret = parse_ipv4(sb, ipstr, &parsed->server_addr);
if (ret < 0)
return ret;
break;
case Opt_metadev_path:
case Opt_noacl:
sb->s_flags &= ~MS_POSIXACL;
break;
case Opt_orphan_scan_delay_ms:
if (opts->orphan_scan_delay_ms != -1) {
scoutfs_err(sb, "multiple orphan_scan_delay_ms options provided, only provide one.");
return -EINVAL;
}
ret = match_int(args, &nr);
if (ret < 0 ||
nr < MIN_ORPHAN_SCAN_DELAY_MS || nr > MAX_ORPHAN_SCAN_DELAY_MS) {
scoutfs_err(sb, "invalid orphan_scan_delay_ms option, must be between %lu and %lu",
MIN_ORPHAN_SCAN_DELAY_MS, MAX_ORPHAN_SCAN_DELAY_MS);
if (ret == 0)
ret = -EINVAL;
ret = parse_bdev_path(sb, &args[0],
&parsed->metadev_path);
if (ret < 0)
return ret;
}
opts->orphan_scan_delay_ms = nr;
break;
case Opt_quorum_slot_nr:
if (opts->quorum_slot_nr != -1) {
scoutfs_err(sb, "multiple quorum_slot_nr options provided, only provide one.");
return -EINVAL;
}
ret = match_int(args, &nr);
if (ret < 0 || nr < 0 || nr >= SCOUTFS_QUORUM_MAX_SLOTS) {
scoutfs_err(sb, "invalid quorum_slot_nr option, must be between 0 and %u",
SCOUTFS_QUORUM_MAX_SLOTS - 1);
if (ret == 0)
ret = -EINVAL;
return ret;
}
opts->quorum_slot_nr = nr;
break;
default:
scoutfs_err(sb, "Unknown or malformed option, \"%s\"", p);
return -EINVAL;
scoutfs_err(sb, "Unknown or malformed option, \"%s\"",
p);
break;
}
}
if (opts->orphan_scan_delay_ms == -1)
opts->orphan_scan_delay_ms = DEFAULT_ORPHAN_SCAN_DELAY_MS;
if (!opts->metadev_path) {
if (!parsed->metadev_path) {
scoutfs_err(sb, "Required mount option \"metadev_path\" not found");
return -EINVAL;
}
@@ -240,267 +176,40 @@ static int parse_options(struct super_block *sb, char *options, struct scoutfs_m
return 0;
}
void scoutfs_options_read(struct super_block *sb, struct scoutfs_mount_options *opts)
{
DECLARE_OPTIONS_INFO(sb, optinf);
unsigned int seq;
if (WARN_ON_ONCE(optinf == NULL)) {
/* trying to use options before early setup or after destroy */
init_default_options(opts);
return;
}
do {
seq = read_seqbegin(&optinf->seqlock);
memcpy(opts, &optinf->opts, sizeof(struct scoutfs_mount_options));
} while (read_seqretry(&optinf->seqlock, seq));
}
/*
* Early setup that parses and stores the options so that the rest of
* setup can use them. Full options setup that relies on other
* components will be done later.
*/
int scoutfs_options_early_setup(struct super_block *sb, char *options)
int scoutfs_options_setup(struct super_block *sb)
{
struct scoutfs_sb_info *sbi = SCOUTFS_SB(sb);
struct scoutfs_mount_options opts;
struct options_info *optinf;
struct options_sb_info *osi;
int ret;
init_default_options(&opts);
osi = kzalloc(sizeof(struct options_sb_info), GFP_KERNEL);
if (!osi)
return -ENOMEM;
ret = parse_options(sb, options, &opts);
if (ret < 0)
goto out;
sbi->options = osi;
optinf = kzalloc(sizeof(struct options_info), GFP_KERNEL);
if (!optinf) {
osi->debugfs_dir = debugfs_create_dir("options", sbi->debug_root);
if (!osi->debugfs_dir) {
ret = -ENOMEM;
goto out;
}
seqlock_init(&optinf->seqlock);
scoutfs_sysfs_init_attrs(sb, &optinf->sysfs_attrs);
write_seqlock(&optinf->seqlock);
optinf->opts = opts;
write_sequnlock(&optinf->seqlock);
sbi->options_info = optinf;
ret = 0;
out:
if (ret < 0)
free_options(&opts);
return ret;
}
int scoutfs_options_show(struct seq_file *seq, struct dentry *root)
{
struct super_block *sb = root->d_sb;
struct scoutfs_mount_options opts;
const bool is_acl = !!(sb->s_flags & MS_POSIXACL);
scoutfs_options_read(sb, &opts);
if (is_acl)
seq_puts(seq, ",acl");
seq_printf(seq, ",data_prealloc_blocks=%llu", opts.data_prealloc_blocks);
seq_printf(seq, ",data_prealloc_contig_only=%u", opts.data_prealloc_contig_only);
seq_printf(seq, ",metadev_path=%s", opts.metadev_path);
if (!is_acl)
seq_puts(seq, ",noacl");
seq_printf(seq, ",orphan_scan_delay_ms=%u", opts.orphan_scan_delay_ms);
if (opts.quorum_slot_nr >= 0)
seq_printf(seq, ",quorum_slot_nr=%d", opts.quorum_slot_nr);
return 0;
}
static ssize_t data_prealloc_blocks_show(struct kobject *kobj, struct kobj_attribute *attr,
char *buf)
{
struct super_block *sb = SCOUTFS_SYSFS_ATTRS_SB(kobj);
struct scoutfs_mount_options opts;
scoutfs_options_read(sb, &opts);
return snprintf(buf, PAGE_SIZE, "%llu", opts.data_prealloc_blocks);
}
static ssize_t data_prealloc_blocks_store(struct kobject *kobj, struct kobj_attribute *attr,
const char *buf, size_t count)
{
struct super_block *sb = SCOUTFS_SYSFS_ATTRS_SB(kobj);
DECLARE_OPTIONS_INFO(sb, optinf);
char nullterm[30]; /* more than enough for octal -U64_MAX */
u64 val;
int len;
int ret;
len = min(count, sizeof(nullterm) - 1);
memcpy(nullterm, buf, len);
nullterm[len] = '\0';
ret = kstrtoll(nullterm, 0, &val);
if (ret < 0 || val < MIN_DATA_PREALLOC_BLOCKS || val > MAX_DATA_PREALLOC_BLOCKS) {
scoutfs_err(sb, "invalid data_prealloc_blocks option, must be between %llu and %llu",
MIN_DATA_PREALLOC_BLOCKS, MAX_DATA_PREALLOC_BLOCKS);
return -EINVAL;
}
write_seqlock(&optinf->seqlock);
optinf->opts.data_prealloc_blocks = val;
write_sequnlock(&optinf->seqlock);
return count;
}
SCOUTFS_ATTR_RW(data_prealloc_blocks);
static ssize_t data_prealloc_contig_only_show(struct kobject *kobj, struct kobj_attribute *attr,
char *buf)
{
struct super_block *sb = SCOUTFS_SYSFS_ATTRS_SB(kobj);
struct scoutfs_mount_options opts;
scoutfs_options_read(sb, &opts);
return snprintf(buf, PAGE_SIZE, "%u", opts.data_prealloc_contig_only);
}
static ssize_t data_prealloc_contig_only_store(struct kobject *kobj, struct kobj_attribute *attr,
const char *buf, size_t count)
{
struct super_block *sb = SCOUTFS_SYSFS_ATTRS_SB(kobj);
DECLARE_OPTIONS_INFO(sb, optinf);
char nullterm[20]; /* more than enough for octal -U32_MAX */
long val;
int len;
int ret;
len = min(count, sizeof(nullterm) - 1);
memcpy(nullterm, buf, len);
nullterm[len] = '\0';
ret = kstrtol(nullterm, 0, &val);
if (ret < 0 || val < 0 || val > 1) {
scoutfs_err(sb, "invalid data_prealloc_contig_only option, bool must be 0 or 1");
return -EINVAL;
}
write_seqlock(&optinf->seqlock);
optinf->opts.data_prealloc_contig_only = val;
write_sequnlock(&optinf->seqlock);
return count;
}
SCOUTFS_ATTR_RW(data_prealloc_contig_only);
static ssize_t metadev_path_show(struct kobject *kobj, struct kobj_attribute *attr, char *buf)
{
struct super_block *sb = SCOUTFS_SYSFS_ATTRS_SB(kobj);
struct scoutfs_mount_options opts;
scoutfs_options_read(sb, &opts);
return snprintf(buf, PAGE_SIZE, "%s", opts.metadev_path);
}
SCOUTFS_ATTR_RO(metadev_path);
static ssize_t orphan_scan_delay_ms_show(struct kobject *kobj, struct kobj_attribute *attr,
char *buf)
{
struct super_block *sb = SCOUTFS_SYSFS_ATTRS_SB(kobj);
struct scoutfs_mount_options opts;
scoutfs_options_read(sb, &opts);
return snprintf(buf, PAGE_SIZE, "%u", opts.orphan_scan_delay_ms);
}
static ssize_t orphan_scan_delay_ms_store(struct kobject *kobj, struct kobj_attribute *attr,
const char *buf, size_t count)
{
struct super_block *sb = SCOUTFS_SYSFS_ATTRS_SB(kobj);
DECLARE_OPTIONS_INFO(sb, optinf);
char nullterm[20]; /* more than enough for octal -U32_MAX */
long val;
int len;
int ret;
len = min(count, sizeof(nullterm) - 1);
memcpy(nullterm, buf, len);
nullterm[len] = '\0';
ret = kstrtol(nullterm, 0, &val);
if (ret < 0 || val < MIN_ORPHAN_SCAN_DELAY_MS || val > MAX_ORPHAN_SCAN_DELAY_MS) {
scoutfs_err(sb, "invalid orphan_scan_delay_ms value written to options sysfs file, must be between %lu and %lu",
MIN_ORPHAN_SCAN_DELAY_MS, MAX_ORPHAN_SCAN_DELAY_MS);
return -EINVAL;
}
write_seqlock(&optinf->seqlock);
optinf->opts.orphan_scan_delay_ms = val;
write_sequnlock(&optinf->seqlock);
scoutfs_inode_schedule_orphan_dwork(sb);
return count;
}
SCOUTFS_ATTR_RW(orphan_scan_delay_ms);
static ssize_t quorum_slot_nr_show(struct kobject *kobj, struct kobj_attribute *attr, char *buf)
{
struct super_block *sb = SCOUTFS_SYSFS_ATTRS_SB(kobj);
struct scoutfs_mount_options opts;
scoutfs_options_read(sb, &opts);
return snprintf(buf, PAGE_SIZE, "%d\n", opts.quorum_slot_nr);
}
SCOUTFS_ATTR_RO(quorum_slot_nr);
static struct attribute *options_attrs[] = {
SCOUTFS_ATTR_PTR(data_prealloc_blocks),
SCOUTFS_ATTR_PTR(data_prealloc_contig_only),
SCOUTFS_ATTR_PTR(metadev_path),
SCOUTFS_ATTR_PTR(orphan_scan_delay_ms),
SCOUTFS_ATTR_PTR(quorum_slot_nr),
NULL,
};
int scoutfs_options_setup(struct super_block *sb)
{
DECLARE_OPTIONS_INFO(sb, optinf);
int ret;
ret = scoutfs_sysfs_create_attrs(sb, &optinf->sysfs_attrs, options_attrs, "mount_options");
if (ret < 0)
if (ret)
scoutfs_options_destroy(sb);
return ret;
}
/*
* We remove the sysfs files early in unmount so that they can't try to call other subsystems
* as they're being destroyed.
*/
void scoutfs_options_stop(struct super_block *sb)
{
DECLARE_OPTIONS_INFO(sb, optinf);
if (optinf)
scoutfs_sysfs_destroy_attrs(sb, &optinf->sysfs_attrs);
}
void scoutfs_options_destroy(struct super_block *sb)
{
struct scoutfs_sb_info *sbi = SCOUTFS_SB(sb);
DECLARE_OPTIONS_INFO(sb, optinf);
struct options_sb_info *osi = sbi->options;
scoutfs_options_stop(sb);
if (optinf) {
free_options(&optinf->opts);
kfree(optinf);
sbi->options_info = NULL;
if (osi) {
if (osi->debugfs_dir)
debugfs_remove_recursive(osi->debugfs_dir);
kfree(osi);
sbi->options = NULL;
}
}

View File

@@ -5,21 +5,23 @@
#include <linux/in.h>
#include "format.h"
struct scoutfs_mount_options {
u64 data_prealloc_blocks;
bool data_prealloc_contig_only;
char *metadev_path;
unsigned int orphan_scan_delay_ms;
int quorum_slot_nr;
enum scoutfs_mount_options {
Opt_server_addr,
Opt_metadev_path,
Opt_err,
};
void scoutfs_options_read(struct super_block *sb, struct scoutfs_mount_options *opts);
int scoutfs_options_show(struct seq_file *seq, struct dentry *root);
struct mount_options {
struct sockaddr_in server_addr;
char *metadev_path;
};
int scoutfs_options_early_setup(struct super_block *sb, char *options);
int scoutfs_parse_options(struct super_block *sb, char *options,
struct mount_options *parsed);
int scoutfs_options_setup(struct super_block *sb);
void scoutfs_options_stop(struct super_block *sb);
void scoutfs_options_destroy(struct super_block *sb);
u32 scoutfs_option_u32(struct super_block *sb, int token);
#define scoutfs_option_bool scoutfs_option_u32
#endif /* _SCOUTFS_OPTIONS_H_ */

File diff suppressed because it is too large Load Diff

View File

@@ -1,17 +1,10 @@
#ifndef _SCOUTFS_QUORUM_H_
#define _SCOUTFS_QUORUM_H_
int scoutfs_quorum_server_sin(struct super_block *sb, struct sockaddr_in *sin);
u8 scoutfs_quorum_votes_needed(struct super_block *sb);
void scoutfs_quorum_slot_sin(struct scoutfs_quorum_config *qconf, int i,
struct sockaddr_in *sin);
int scoutfs_quorum_fence_leaders(struct super_block *sb, struct scoutfs_quorum_config *qconf,
u64 term);
int scoutfs_quorum_election(struct super_block *sb, ktime_t timeout_abs,
u64 prev_term, u64 *elected_term);
void scoutfs_quorum_clear_leader(struct super_block *sb);
int scoutfs_quorum_setup(struct super_block *sb);
void scoutfs_quorum_shutdown(struct super_block *sb);
void scoutfs_quorum_destroy(struct super_block *sb);
#endif

View File

@@ -1,305 +0,0 @@
/*
* Copyright (C) 2021 Versity Software, Inc. All rights reserved.
*
* This program is free software; you can redistribute it and/or
* modify it under the terms of the GNU General Public
* License v2 as published by the Free Software Foundation.
*
* This program is distributed in the hope that it will be useful,
* but WITHOUT ANY WARRANTY; without even the implied warranty of
* MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU
* General Public License for more details.
*/
#include <linux/kernel.h>
#include <linux/fs.h>
#include <linux/slab.h>
#include <linux/sched.h>
#include <linux/rhashtable.h>
#include <linux/rcupdate.h>
#include <linux/list_sort.h>
#include "super.h"
#include "recov.h"
#include "cmp.h"
/*
* There are a few server messages which can't be processed until they
* know that they have state for all possibly active clients. These
* little helpers track which clients have recovered what state and give
* those message handlers a call to check if recovery has completed. We
* track the timeout here, but all we do is call back into the server to
* take steps to evict timed out clients and then let us know that their
* recovery has finished.
*/
struct recov_info {
struct super_block *sb;
spinlock_t lock;
struct list_head pending;
struct timer_list timer;
void (*timeout_fn)(struct super_block *);
};
#define DECLARE_RECOV_INFO(sb, name) \
struct recov_info *name = SCOUTFS_SB(sb)->recov_info
struct recov_pending {
struct list_head head;
u64 rid;
int which;
};
static struct recov_pending *next_pending(struct recov_info *recinf, u64 rid, int which)
{
struct recov_pending *pend;
list_for_each_entry(pend, &recinf->pending, head) {
if (pend->rid > rid && pend->which & which)
return pend;
}
return NULL;
}
static struct recov_pending *lookup_pending(struct recov_info *recinf, u64 rid, int which)
{
struct recov_pending *pend;
pend = next_pending(recinf, rid - 1, which);
if (pend && pend->rid == rid)
return pend;
return NULL;
}
/*
* We keep the pending list sorted by rid so that we can iterate over
* them. The list should be small and shouldn't be used often.
*/
static int cmp_pending_rid(void *priv, struct list_head *A, struct list_head *B)
{
struct recov_pending *a = list_entry(A, struct recov_pending, head);
struct recov_pending *b = list_entry(B, struct recov_pending, head);
return scoutfs_cmp_u64s(a->rid, b->rid);
}
/*
* Record that we'll be waiting for a client to recover something.
* _finished will eventually be called for every _prepare, either
* because recovery naturally finished or because it timed out and the
* server evicted the client.
*/
int scoutfs_recov_prepare(struct super_block *sb, u64 rid, int which)
{
DECLARE_RECOV_INFO(sb, recinf);
struct recov_pending *alloc;
struct recov_pending *pend;
if (WARN_ON_ONCE(which & SCOUTFS_RECOV_INVALID))
return -EINVAL;
alloc = kmalloc(sizeof(*pend), GFP_NOFS);
if (!alloc)
return -ENOMEM;
spin_lock(&recinf->lock);
pend = lookup_pending(recinf, rid, SCOUTFS_RECOV_ALL);
if (pend) {
pend->which |= which;
} else {
swap(pend, alloc);
pend->rid = rid;
pend->which = which;
list_add_tail(&pend->head, &recinf->pending);
list_sort(NULL, &recinf->pending, cmp_pending_rid);
}
spin_unlock(&recinf->lock);
kfree(alloc);
return 0;
}
/*
* Recovery is only finished once we've begun (which sets the timer) and
* all clients have finished. If we didn't test the timer we could
* claim it finished prematurely as clients are being prepared.
*/
static int recov_finished(struct recov_info *recinf)
{
return !!(recinf->timeout_fn != NULL && list_empty(&recinf->pending));
}
static void timer_callback(struct timer_list *timer)
{
struct recov_info *recinf = from_timer(recinf, timer, timer);
recinf->timeout_fn(recinf->sb);
}
/*
* Begin waiting for recovery once we've prepared all the clients. If
* the timeout period elapses before _finish is called on all prepared
* clients then the timer will call the callback.
*
* Returns > 0 if all the prepared clients finish recovery before begin
* is called.
*/
int scoutfs_recov_begin(struct super_block *sb, void (*timeout_fn)(struct super_block *),
unsigned int timeout_ms)
{
DECLARE_RECOV_INFO(sb, recinf);
int ret;
spin_lock(&recinf->lock);
recinf->timeout_fn = timeout_fn;
recinf->timer.expires = jiffies + msecs_to_jiffies(timeout_ms);
add_timer(&recinf->timer);
ret = recov_finished(recinf);
spin_unlock(&recinf->lock);
if (ret > 0)
del_timer_sync(&recinf->timer);
return ret;
}
/*
* A given client has recovered the given state. If it's finished all
* recovery then we free it, and if all clients have finished recovery
* then we cancel the timeout timer.
*
* Returns > 0 if _begin has been called and all clients have finished.
* The caller will only see > 0 returned once.
*/
int scoutfs_recov_finish(struct super_block *sb, u64 rid, int which)
{
DECLARE_RECOV_INFO(sb, recinf);
struct recov_pending *pend;
int ret = 0;
spin_lock(&recinf->lock);
pend = lookup_pending(recinf, rid, which);
if (pend) {
pend->which &= ~which;
if (pend->which) {
pend = NULL;
} else {
list_del(&pend->head);
ret = recov_finished(recinf);
}
}
spin_unlock(&recinf->lock);
if (ret > 0)
del_timer_sync(&recinf->timer);
kfree(pend);
return ret;
}
/*
* Returns true if the given client is still trying to recover
* the given state.
*/
bool scoutfs_recov_is_pending(struct super_block *sb, u64 rid, int which)
{
DECLARE_RECOV_INFO(sb, recinf);
bool is_pending;
spin_lock(&recinf->lock);
is_pending = lookup_pending(recinf, rid, which) != NULL;
spin_unlock(&recinf->lock);
return is_pending;
}
/*
* Return the next rid after the given rid of a client waiting for the
* given state to be recovered. Start with rid 0, returns 0 when there
* are no more clients waiting for recovery.
*
* This is inherently racey. Callers are responsible for resolving any
* actions taken based on pending with the recovery finishing, perhaps
* before we return.
*/
u64 scoutfs_recov_next_pending(struct super_block *sb, u64 rid, int which)
{
DECLARE_RECOV_INFO(sb, recinf);
struct recov_pending *pend;
spin_lock(&recinf->lock);
pend = next_pending(recinf, rid, which);
rid = pend ? pend->rid : 0;
spin_unlock(&recinf->lock);
return rid;
}
/*
* The server is shutting down and doesn't need to worry about recovery
* anymore. It'll be built up again by the next server, if needed.
*/
void scoutfs_recov_shutdown(struct super_block *sb)
{
DECLARE_RECOV_INFO(sb, recinf);
struct recov_pending *pend;
struct recov_pending *tmp;
LIST_HEAD(list);
del_timer_sync(&recinf->timer);
spin_lock(&recinf->lock);
list_splice_init(&recinf->pending, &list);
recinf->timeout_fn = NULL;
spin_unlock(&recinf->lock);
list_for_each_entry_safe(pend, tmp, &list, head) {
list_del(&pend->head);
kfree(pend);
}
}
int scoutfs_recov_setup(struct super_block *sb)
{
struct scoutfs_sb_info *sbi = SCOUTFS_SB(sb);
struct recov_info *recinf;
int ret;
recinf = kzalloc(sizeof(struct recov_info), GFP_KERNEL);
if (!recinf) {
ret = -ENOMEM;
goto out;
}
recinf->sb = sb;
spin_lock_init(&recinf->lock);
INIT_LIST_HEAD(&recinf->pending);
timer_setup(&recinf->timer, timer_callback, 0);
sbi->recov_info = recinf;
ret = 0;
out:
return ret;
}
void scoutfs_recov_destroy(struct super_block *sb)
{
DECLARE_RECOV_INFO(sb, recinf);
struct scoutfs_sb_info *sbi = SCOUTFS_SB(sb);
if (recinf) {
scoutfs_recov_shutdown(sb);
kfree(recinf);
sbi->recov_info = NULL;
}
}

View File

@@ -1,23 +0,0 @@
#ifndef _SCOUTFS_RECOV_H_
#define _SCOUTFS_RECOV_H_
enum {
SCOUTFS_RECOV_GREETING = ( 1 << 0),
SCOUTFS_RECOV_LOCKS = ( 1 << 1),
SCOUTFS_RECOV_INVALID = (~0 << 2),
SCOUTFS_RECOV_ALL = (~SCOUTFS_RECOV_INVALID),
};
int scoutfs_recov_prepare(struct super_block *sb, u64 rid, int which);
int scoutfs_recov_begin(struct super_block *sb, void (*timeout_fn)(struct super_block *),
unsigned int timeout_ms);
int scoutfs_recov_finish(struct super_block *sb, u64 rid, int which);
bool scoutfs_recov_is_pending(struct super_block *sb, u64 rid, int which);
u64 scoutfs_recov_next_pending(struct super_block *sb, u64 rid, int which);
void scoutfs_recov_shutdown(struct super_block *sb);
int scoutfs_recov_setup(struct super_block *sb);
void scoutfs_recov_destroy(struct super_block *sb);
#endif

File diff suppressed because it is too large Load Diff

File diff suppressed because it is too large Load Diff

View File

@@ -56,31 +56,23 @@ do { \
__entry->name##_data_len, __entry->name##_cmd, __entry->name##_flags, \
__entry->name##_error
u64 scoutfs_server_reserved_meta_blocks(struct super_block *sb);
int scoutfs_server_lock_request(struct super_block *sb, u64 rid,
struct scoutfs_net_lock *nl);
int scoutfs_server_lock_response(struct super_block *sb, u64 rid, u64 id,
struct scoutfs_net_lock *nl);
struct scoutfs_net_lock_grant_response *gr);
int scoutfs_server_lock_recover_request(struct super_block *sb, u64 rid,
struct scoutfs_key *key);
void scoutfs_server_recov_finish(struct super_block *sb, u64 rid, int which);
void scoutfs_server_get_roots(struct super_block *sb,
struct scoutfs_net_roots *roots);
int scoutfs_server_hold_commit(struct super_block *sb);
int scoutfs_server_apply_commit(struct super_block *sb, int err);
int scoutfs_server_send_omap_request(struct super_block *sb, u64 rid,
struct scoutfs_open_ino_map_args *args);
int scoutfs_server_send_omap_response(struct super_block *sb, u64 rid, u64 id,
struct scoutfs_open_ino_map *map, int err);
u64 scoutfs_server_seq(struct super_block *sb);
u64 scoutfs_server_next_seq(struct super_block *sb);
void scoutfs_server_set_seq_if_greater(struct super_block *sb, u64 seq);
void scoutfs_server_start(struct super_block *sb, struct scoutfs_quorum_config *qconf, u64 term);
struct sockaddr_in;
struct scoutfs_quorum_elected_info;
int scoutfs_server_start(struct super_block *sb, struct sockaddr_in *sin,
u64 term);
void scoutfs_server_abort(struct super_block *sb);
void scoutfs_server_stop(struct super_block *sb);
void scoutfs_server_stop_wait(struct super_block *sb);
bool scoutfs_server_is_running(struct super_block *sb);
bool scoutfs_server_is_up(struct super_block *sb);
bool scoutfs_server_is_down(struct super_block *sb);
int scoutfs_server_setup(struct super_block *sb);
void scoutfs_server_destroy(struct super_block *sb);

View File

@@ -28,7 +28,6 @@
#include "btree.h"
#include "spbm.h"
#include "client.h"
#include "counters.h"
#include "scoutfs_trace.h"
/*
@@ -256,9 +255,24 @@ static u8 height_for_blk(u64 blk)
return hei;
}
static inline u32 srch_level_magic(int level)
static void init_file_block(struct super_block *sb, struct scoutfs_block *bl,
int level)
{
return level ? SCOUTFS_BLOCK_MAGIC_SRCH_PARENT : SCOUTFS_BLOCK_MAGIC_SRCH_BLOCK;
struct scoutfs_super_block *super = &SCOUTFS_SB(sb)->super;
struct scoutfs_block_header *hdr;
/* don't leak uninit kernel mem.. block should do this for us? */
memset(bl->data, 0, SCOUTFS_BLOCK_LG_SIZE);
hdr = bl->data;
hdr->fsid = super->hdr.fsid;
hdr->blkno = cpu_to_le64(bl->blkno);
prandom_bytes(&hdr->seq, sizeof(hdr->seq));
if (level)
hdr->magic = cpu_to_le32(SCOUTFS_BLOCK_MAGIC_SRCH_PARENT);
else
hdr->magic = cpu_to_le32(SCOUTFS_BLOCK_MAGIC_SRCH_BLOCK);
}
/*
@@ -270,15 +284,39 @@ static inline u32 srch_level_magic(int level)
*/
static int read_srch_block(struct super_block *sb,
struct scoutfs_block_writer *wri, int level,
struct scoutfs_block_ref *ref,
struct scoutfs_srch_ref *ref,
struct scoutfs_block **bl_ret)
{
u32 magic = srch_level_magic(level);
int ret;
struct scoutfs_block *bl;
int retries = 0;
int ret = 0;
int mag;
ret = scoutfs_block_read_ref(sb, ref, magic, bl_ret);
if (ret == -ESTALE)
mag = level ? SCOUTFS_BLOCK_MAGIC_SRCH_PARENT :
SCOUTFS_BLOCK_MAGIC_SRCH_BLOCK;
retry:
bl = scoutfs_block_read(sb, le64_to_cpu(ref->blkno));
if (!IS_ERR_OR_NULL(bl) &&
!scoutfs_block_consistent_ref(sb, bl, ref->seq, ref->blkno, mag)) {
scoutfs_inc_counter(sb, srch_inconsistent_ref);
scoutfs_block_writer_forget(sb, wri, bl);
scoutfs_block_invalidate(sb, bl);
scoutfs_block_put(sb, bl);
bl = NULL;
if (retries++ == 0)
goto retry;
bl = ERR_PTR(-ESTALE);
scoutfs_inc_counter(sb, srch_read_stale);
}
if (IS_ERR(bl)) {
ret = PTR_ERR(bl);
bl = NULL;
}
*bl_ret = bl;
return ret;
}
@@ -295,7 +333,7 @@ static int read_path_block(struct super_block *sb,
{
struct scoutfs_block *bl = NULL;
struct scoutfs_srch_parent *srp;
struct scoutfs_block_ref ref;
struct scoutfs_srch_ref ref;
int level;
int ind;
int ret;
@@ -354,10 +392,12 @@ static int get_file_block(struct super_block *sb,
struct scoutfs_block_header *hdr;
struct scoutfs_block *bl = NULL;
struct scoutfs_srch_parent *srp;
struct scoutfs_block_ref new_root_ref;
struct scoutfs_block_ref *ref;
struct scoutfs_block *new_bl;
struct scoutfs_srch_ref *ref;
u64 blkno = 0;
int level;
int ind;
int err;
int ret;
u8 hei;
@@ -369,21 +409,29 @@ static int get_file_block(struct super_block *sb,
goto out;
}
memset(&new_root_ref, 0, sizeof(new_root_ref));
level = sfl->height;
ret = scoutfs_block_dirty_ref(sb, alloc, wri, &new_root_ref,
srch_level_magic(level), &bl, 0, NULL);
ret = scoutfs_alloc_meta(sb, alloc, wri, &blkno);
if (ret < 0)
goto out;
if (level) {
bl = scoutfs_block_create(sb, blkno);
if (IS_ERR(bl)) {
ret = PTR_ERR(bl);
goto out;
}
blkno = 0;
scoutfs_block_writer_mark_dirty(sb, wri, bl);
init_file_block(sb, bl, sfl->height);
if (sfl->height) {
srp = bl->data;
srp->refs[0] = sfl->ref;
srp->refs[0].blkno = sfl->ref.blkno;
srp->refs[0].seq = sfl->ref.seq;
}
hdr = bl->data;
sfl->ref = new_root_ref;
sfl->ref.blkno = hdr->blkno;
sfl->ref.seq = hdr->seq;
sfl->height++;
scoutfs_block_put(sb, bl);
bl = NULL;
@@ -399,13 +447,54 @@ static int get_file_block(struct super_block *sb,
goto out;
}
if (flags & GFB_DIRTY)
ret = scoutfs_block_dirty_ref(sb, alloc, wri, ref, srch_level_magic(level),
&bl, 0, NULL);
else
ret = scoutfs_block_read_ref(sb, ref, srch_level_magic(level), &bl);
if (ret < 0)
goto out;
/* read an existing block */
if (ref->blkno) {
ret = read_srch_block(sb, wri, level, ref, &bl);
if (ret < 0)
goto out;
}
/* allocate a new block if we need it */
if (!ref->blkno || ((flags & GFB_DIRTY) &&
!scoutfs_block_writer_is_dirty(sb, bl))) {
ret = scoutfs_alloc_meta(sb, alloc, wri, &blkno);
if (ret < 0)
goto out;
new_bl = scoutfs_block_create(sb, blkno);
if (IS_ERR(new_bl)) {
ret = PTR_ERR(new_bl);
goto out;
}
if (bl) {
/* cow old block if we have one */
ret = scoutfs_free_meta(sb, alloc, wri,
bl->blkno);
if (ret)
goto out;
memcpy(new_bl->data, bl->data,
SCOUTFS_BLOCK_LG_SIZE);
scoutfs_block_put(sb, bl);
bl = new_bl;
hdr = bl->data;
hdr->blkno = cpu_to_le64(bl->blkno);
prandom_bytes(&hdr->seq, sizeof(hdr->seq));
} else {
/* init new allocated block */
bl = new_bl;
init_file_block(sb, bl, level);
}
blkno = 0;
scoutfs_block_writer_mark_dirty(sb, wri, bl);
/* update file or parent block ref */
hdr = bl->data;
ref->blkno = hdr->blkno;
ref->seq = hdr->seq;
}
if (level == 0) {
ret = 0;
@@ -425,6 +514,12 @@ static int get_file_block(struct super_block *sb,
out:
scoutfs_block_put(sb, parent);
/* return allocated blkno on error */
if (blkno > 0) {
err = scoutfs_free_meta(sb, alloc, wri, blkno);
BUG_ON(err); /* radix should have been dirty */
}
if (ret < 0) {
scoutfs_block_put(sb, bl);
bl = NULL;
@@ -861,6 +956,7 @@ int scoutfs_srch_search_xattrs(struct super_block *sb,
struct scoutfs_srch_rb_root *sroot,
u64 hash, u64 ino, u64 last_ino, bool *done)
{
struct scoutfs_net_roots prev_roots;
struct scoutfs_net_roots roots;
struct scoutfs_srch_entry start;
struct scoutfs_srch_entry end;
@@ -868,7 +964,6 @@ int scoutfs_srch_search_xattrs(struct super_block *sb,
struct scoutfs_log_trees lt;
struct scoutfs_srch_file sfl;
SCOUTFS_BTREE_ITEM_REF(iref);
DECLARE_SAVED_REFS(saved);
struct scoutfs_key key;
unsigned long limit = SRCH_LIMIT;
int ret;
@@ -877,6 +972,7 @@ int scoutfs_srch_search_xattrs(struct super_block *sb,
*done = false;
srch_init_rb_root(sroot);
memset(&prev_roots, 0, sizeof(prev_roots));
start.hash = cpu_to_le64(hash);
start.ino = cpu_to_le64(ino);
@@ -891,6 +987,7 @@ retry:
ret = scoutfs_client_get_roots(sb, &roots);
if (ret)
goto out;
memset(&roots.fs_root, 0, sizeof(roots.fs_root));
end = final;
@@ -966,10 +1063,16 @@ retry:
*done = sre_cmp(&end, &final) == 0;
ret = 0;
out:
ret = scoutfs_block_check_stale(sb, ret, &saved, &roots.srch_root.ref,
&roots.logs_root.ref);
if (ret == -ESTALE)
goto retry;
if (ret == -ESTALE) {
if (memcmp(&prev_roots, &roots, sizeof(roots)) == 0) {
scoutfs_inc_counter(sb, srch_search_stale_eio);
ret = -EIO;
} else {
scoutfs_inc_counter(sb, srch_search_stale_retry);
prev_roots = roots;
goto retry;
}
}
return ret;
}
@@ -982,27 +1085,18 @@ int scoutfs_srch_rotate_log(struct super_block *sb,
struct scoutfs_alloc *alloc,
struct scoutfs_block_writer *wri,
struct scoutfs_btree_root *root,
struct scoutfs_srch_file *sfl, bool force)
struct scoutfs_srch_file *sfl)
{
struct scoutfs_key key;
int ret;
if (sfl->ref.blkno == 0 ||
(!force && le64_to_cpu(sfl->blocks) < SCOUTFS_SRCH_LOG_BLOCK_LIMIT))
if (le64_to_cpu(sfl->blocks) < SCOUTFS_SRCH_LOG_BLOCK_LIMIT)
return 0;
init_srch_key(&key, SCOUTFS_SRCH_LOG_TYPE,
le64_to_cpu(sfl->ref.blkno), 0);
ret = scoutfs_btree_insert(sb, alloc, wri, root, &key,
sfl, sizeof(*sfl));
/*
* While it's fine to replay moving the client's logging srch
* file to the core btree item, server commits should keep it
* from happening. So we'll warn if we see it happen. This can
* be removed eventually.
*/
if (WARN_ON_ONCE(ret == -EEXIST))
ret = 0;
if (ret == 0) {
memset(sfl, 0, sizeof(*sfl));
scoutfs_inc_counter(sb, srch_rotate_log);
@@ -1104,10 +1198,14 @@ int scoutfs_srch_get_compact(struct super_block *sb,
for (;;scoutfs_key_inc(&key)) {
ret = scoutfs_btree_next(sb, root, &key, &iref);
if (ret == -ENOENT) {
ret = 0;
sc->nr = 0;
goto out;
}
if (ret == 0) {
if (iref.key->sk_type != type) {
ret = -ENOENT;
} else if (iref.val_len == sizeof(sfl)) {
if (iref.val_len == sizeof(struct scoutfs_srch_file)) {
key = *iref.key;
memcpy(&sfl, iref.val, iref.val_len);
} else {
@@ -1115,25 +1213,24 @@ int scoutfs_srch_get_compact(struct super_block *sb,
}
scoutfs_btree_put_iref(&iref);
}
if (ret < 0) {
/* see if we ran out of log files or files entirely */
if (ret == -ENOENT) {
sc->nr = 0;
if (type == SCOUTFS_SRCH_LOG_TYPE) {
type = SCOUTFS_SRCH_BLOCKS_TYPE;
init_srch_key(&key, type, 0, 0);
continue;
} else {
ret = 0;
}
}
if (ret < 0)
goto out;
}
/* skip any files already being compacted */
if (scoutfs_spbm_test(&busy, le64_to_cpu(sfl.ref.blkno)))
continue;
/* see if we ran out of log files or files entirely */
if (key.sk_type != type) {
sc->nr = 0;
if (key.sk_type == SCOUTFS_SRCH_BLOCKS_TYPE) {
type = SCOUTFS_SRCH_BLOCKS_TYPE;
} else {
ret = 0;
goto out;
}
}
/* reset if we iterated into the next size category */
if (type == SCOUTFS_SRCH_BLOCKS_TYPE) {
order = fls64(le64_to_cpu(sfl.blocks)) /
@@ -1482,11 +1579,10 @@ static int kway_merge(struct super_block *sb,
int ind;
int i;
if (WARN_ON_ONCE(nr <= 0))
if (WARN_ON_ONCE(nr <= 1))
return -EINVAL;
/* always at least one parent for single leaf */
nr_parents = max_t(unsigned long, 1, roundup_pow_of_two(nr) - 1);
nr_parents = roundup_pow_of_two(nr) - 1;
/* root at [1] for easy sib/parent index calc, final pad for odd sib */
nr_nodes = 1 + nr_parents + nr + 1;
tnodes = __vmalloc(nr_nodes * sizeof(struct tourn_node),
@@ -2083,7 +2179,7 @@ static int delete_files(struct super_block *sb, struct scoutfs_alloc *alloc,
struct scoutfs_block_writer *wri,
struct scoutfs_srch_compact *sc)
{
int ret = 0;
int ret;
int i;
for (i = 0; i < sc->nr; i++) {
@@ -2129,7 +2225,6 @@ static void scoutfs_srch_compact_worker(struct work_struct *work)
struct scoutfs_alloc alloc;
unsigned long delay;
int ret;
int err;
sc = kmalloc(sizeof(struct scoutfs_srch_compact), GFP_NOFS);
if (sc == NULL) {
@@ -2160,22 +2255,17 @@ static void scoutfs_srch_compact_worker(struct work_struct *work)
if (ret < 0)
goto commit;
ret = scoutfs_alloc_prepare_commit(sb, &alloc, &wri) ?:
scoutfs_block_writer_write(sb, &wri);
ret = scoutfs_block_writer_write(sb, &wri);
commit:
/* the server won't use our partial compact if _ERROR is set */
sc->meta_avail = alloc.avail;
sc->meta_freed = alloc.freed;
sc->flags |= ret < 0 ? SCOUTFS_SRCH_COMPACT_FLAG_ERROR : 0;
err = scoutfs_client_srch_commit_compact(sb, sc);
if (err < 0 && ret == 0)
ret = err;
ret = scoutfs_client_srch_commit_compact(sb, sc);
out:
/* our allocators and files should be stable */
WARN_ON_ONCE(ret == -ESTALE);
if (ret < 0)
scoutfs_inc_counter(sb, srch_compact_error);
scoutfs_block_writer_forget_all(sb, &wri);
if (!atomic_read(&srinf->shutdown)) {

View File

@@ -37,7 +37,7 @@ int scoutfs_srch_rotate_log(struct super_block *sb,
struct scoutfs_alloc *alloc,
struct scoutfs_block_writer *wri,
struct scoutfs_btree_root *root,
struct scoutfs_srch_file *sfl, bool force);
struct scoutfs_srch_file *sfl);
int scoutfs_srch_get_compact(struct super_block *sb,
struct scoutfs_alloc *alloc,
struct scoutfs_block_writer *wri,

View File

@@ -20,6 +20,7 @@
#include <linux/statfs.h>
#include <linux/sched.h>
#include <linux/debugfs.h>
#include <linux/percpu.h>
#include "super.h"
#include "block.h"
@@ -43,43 +44,70 @@
#include "srch.h"
#include "item.h"
#include "alloc.h"
#include "recov.h"
#include "omap.h"
#include "volopt.h"
#include "fence.h"
#include "xattr.h"
#include "scoutfs_trace.h"
static struct dentry *scoutfs_debugfs_root;
/* the statfs file fields can be small (and signed?) :/ */
static __statfs_word saturate_truncated_word(u64 files)
{
__statfs_word word = files;
static DEFINE_PER_CPU(u64, clock_sync_ids) = 0;
if (word != files) {
word = ~0ULL;
if (word < 0)
word = (unsigned long)word >> 1;
/*
* Give the caller a unique clock sync id for a message they're about to
* send. We make the ids reasonably globally unique by using randomly
* initialized per-cpu 64bit counters.
*/
__le64 scoutfs_clock_sync_id(void)
{
u64 rnd = 0;
u64 ret;
u64 *id;
retry:
preempt_disable();
id = this_cpu_ptr(&clock_sync_ids);
if (*id == 0) {
if (rnd == 0) {
preempt_enable();
get_random_bytes(&rnd, sizeof(rnd));
goto retry;
}
*id = rnd;
}
return word;
ret = ++(*id);
preempt_enable();
return cpu_to_le64(ret);
}
struct statfs_free_blocks {
u64 meta;
u64 data;
};
static int count_free_blocks(struct super_block *sb, void *arg, int owner,
u64 id, bool meta, bool avail, u64 blocks)
{
struct statfs_free_blocks *sfb = arg;
if (meta)
sfb->meta += blocks;
else
sfb->data += blocks;
return 0;
}
/*
* The server gives us the current sum of free blocks and the total
* inode count that it can see across all the clients' log trees. It
* won't see allocations and inode creations or deletions that are dirty
* in client memory as it builds a transaction.
* Build the free block counts by having alloc read all the persistent
* blocks which contain allocators and calling us for each of them.
* Only the super block reads aren't cached so repeatedly calling statfs
* is like repeated O_DIRECT IO. We can add a cache and stale results
* if that IO becomes a problem.
*
* We don't have static limits on the number of files so the statfs
* fields for the total possible files and the number free isn't
* particularly helpful. What we do want to report is the number of
* inodes, so we fake a max possible number of inodes given a
* conservative estimate of the total space consumption per file and
* then find the free by subtracting our precise count of active inodes.
* This seems like the least surprising compromise where the file max
* doesn't change and the caller gets the correct count of used inodes.
* We fake the number of free inodes value by assuming that we can fill
* free blocks with a certain number of inodes. We then the number of
* current inodes to that free count to determine the total possible
* inodes.
*
* The fsid that we report is constructed from the xor of the first two
* and second two little endian u32s that make up the uuid bytes.
@@ -87,33 +115,41 @@ static __statfs_word saturate_truncated_word(u64 files)
static int scoutfs_statfs(struct dentry *dentry, struct kstatfs *kst)
{
struct super_block *sb = dentry->d_inode->i_sb;
struct scoutfs_net_statfs nst;
u64 files;
u64 ffree;
struct scoutfs_super_block *super = NULL;
struct statfs_free_blocks sfb = {0,};
__le32 uuid[4];
int ret;
scoutfs_inc_counter(sb, statfs);
ret = scoutfs_client_statfs(sb, &nst);
super = kzalloc(sizeof(struct scoutfs_super_block), GFP_NOFS);
if (!super) {
ret = -ENOMEM;
goto out;
}
ret = scoutfs_read_super(sb, super);
if (ret)
goto out;
kst->f_bfree = (le64_to_cpu(nst.free_meta_blocks) << SCOUTFS_BLOCK_SM_LG_SHIFT) +
le64_to_cpu(nst.free_data_blocks);
ret = scoutfs_alloc_foreach(sb, count_free_blocks, &sfb);
if (ret < 0)
goto out;
kst->f_bfree = (sfb.meta << SCOUTFS_BLOCK_SM_LG_SHIFT) + sfb.data;
kst->f_type = SCOUTFS_SUPER_MAGIC;
kst->f_bsize = SCOUTFS_BLOCK_SM_SIZE;
kst->f_blocks = (le64_to_cpu(nst.total_meta_blocks) << SCOUTFS_BLOCK_SM_LG_SHIFT) +
le64_to_cpu(nst.total_data_blocks);
kst->f_blocks = (le64_to_cpu(super->total_meta_blocks) <<
SCOUTFS_BLOCK_SM_LG_SHIFT) +
le64_to_cpu(super->total_data_blocks);
kst->f_bavail = kst->f_bfree;
files = div_u64(le64_to_cpu(nst.total_meta_blocks) << SCOUTFS_BLOCK_LG_SHIFT, 2048);
ffree = files - le64_to_cpu(nst.inode_count);
kst->f_files = saturate_truncated_word(files);
kst->f_ffree = saturate_truncated_word(ffree);
/* arbitrarily assume ~1K / empty file */
kst->f_ffree = sfb.meta * (SCOUTFS_BLOCK_LG_SIZE / 1024);
kst->f_files = kst->f_ffree + le64_to_cpu(super->next_ino);
BUILD_BUG_ON(sizeof(uuid) != sizeof(nst.uuid));
memcpy(uuid, nst.uuid, sizeof(uuid));
BUILD_BUG_ON(sizeof(uuid) != sizeof(super->uuid));
memcpy(uuid, super->uuid, sizeof(uuid));
kst->f_fsid.val[0] = le32_to_cpu(uuid[0]) ^ le32_to_cpu(uuid[1]);
kst->f_fsid.val[1] = le32_to_cpu(uuid[2]) ^ le32_to_cpu(uuid[3]);
kst->f_namelen = SCOUTFS_NAME_LEN;
@@ -122,17 +158,57 @@ static int scoutfs_statfs(struct dentry *dentry, struct kstatfs *kst)
/* the vfs fills f_flags */
ret = 0;
out:
kfree(super);
/*
* We don't take cluster locks in statfs which makes it a very
* convenient place to trigger lock reclaim for debugging. We
* try to free as many locks as possible.
*/
if (scoutfs_trigger(sb, STATFS_LOCK_PURGE))
scoutfs_free_unused_locks(sb);
scoutfs_free_unused_locks(sb, -1UL);
return ret;
}
static int scoutfs_show_options(struct seq_file *seq, struct dentry *root)
{
struct super_block *sb = root->d_sb;
struct mount_options *opts = &SCOUTFS_SB(sb)->opts;
seq_printf(seq, ",server_addr="SIN_FMT, SIN_ARG(&opts->server_addr));
seq_printf(seq, ",metadev_path=%s", opts->metadev_path);
return 0;
}
static ssize_t metadev_path_show(struct kobject *kobj,
struct kobj_attribute *attr, char *buf)
{
struct super_block *sb = SCOUTFS_SYSFS_ATTRS_SB(kobj);
struct mount_options *opts = &SCOUTFS_SB(sb)->opts;
return snprintf(buf, PAGE_SIZE, "%s", opts->metadev_path);
}
SCOUTFS_ATTR_RO(metadev_path);
static ssize_t server_addr_show(struct kobject *kobj,
struct kobj_attribute *attr, char *buf)
{
struct super_block *sb = SCOUTFS_SYSFS_ATTRS_SB(kobj);
struct mount_options *opts = &SCOUTFS_SB(sb)->opts;
return snprintf(buf, PAGE_SIZE, SIN_FMT"\n",
SIN_ARG(&opts->server_addr));
}
SCOUTFS_ATTR_RO(server_addr);
static struct attribute *mount_options_attrs[] = {
SCOUTFS_ATTR_PTR(metadev_path),
SCOUTFS_ATTR_PTR(server_addr),
NULL,
};
static int scoutfs_sync_fs(struct super_block *sb, int wait)
{
trace_scoutfs_sync_fs(sb, wait);
@@ -150,15 +226,7 @@ static void scoutfs_metadev_close(struct super_block *sb)
struct scoutfs_sb_info *sbi = SCOUTFS_SB(sb);
if (sbi->meta_bdev) {
/*
* Some kernels have blkdev_reread_part which calls
* fsync_bdev while holding the bd_mutex which inverts
* the s_umount hold in deactivate_super and blkdev_put
* from kill_sb->put_super.
*/
lockdep_off();
blkdev_put(sbi->meta_bdev, SCOUTFS_META_BDEV_MODE);
lockdep_on();
sbi->meta_bdev = NULL;
}
}
@@ -175,67 +243,44 @@ static void scoutfs_put_super(struct super_block *sb)
trace_scoutfs_put_super(sb);
/*
* Wait for invalidation and iput to finish with any lingering
* inode references that escaped the evict_inodes in
* generic_shutdown_super. MS_ACTIVE is clear so final iput
* will always evict.
*/
scoutfs_lock_flush_invalidate(sb);
scoutfs_inode_flush_iput(sb);
WARN_ON_ONCE(!list_empty(&sb->s_inodes));
sbi->shutdown = true;
scoutfs_forest_stop(sb);
scoutfs_data_destroy(sb);
scoutfs_srch_destroy(sb);
scoutfs_lock_shutdown(sb);
scoutfs_unlock(sb, sbi->rid_lock, SCOUTFS_LOCK_WRITE);
sbi->rid_lock = NULL;
scoutfs_shutdown_trans(sb);
scoutfs_volopt_destroy(sb);
scoutfs_client_destroy(sb);
scoutfs_inode_destroy(sb);
scoutfs_item_destroy(sb);
scoutfs_forest_destroy(sb);
scoutfs_data_destroy(sb);
scoutfs_quorum_destroy(sb);
/* the server locks the listen address and compacts */
scoutfs_lock_shutdown(sb);
scoutfs_server_destroy(sb);
scoutfs_recov_destroy(sb);
scoutfs_net_destroy(sb);
scoutfs_lock_destroy(sb);
scoutfs_omap_destroy(sb);
/* server clears quorum leader flag during shutdown */
scoutfs_quorum_destroy(sb);
scoutfs_block_destroy(sb);
scoutfs_destroy_triggers(sb);
scoutfs_fence_destroy(sb);
scoutfs_options_destroy(sb);
scoutfs_sysfs_destroy_attrs(sb, &sbi->mopts_ssa);
debugfs_remove(sbi->debug_root);
scoutfs_destroy_counters(sb);
scoutfs_destroy_sysfs(sb);
scoutfs_metadev_close(sb);
kfree(sbi->opts.metadev_path);
kfree(sbi);
sb->s_fs_info = NULL;
}
/*
* Record that we're performing a forced unmount. As put_super drives
* destruction of the filesystem we won't issue more network or storage
* operations because we assume that they'll hang. Pending operations
* can return errors when it's possible to do so. We may be racing with
* pending operations which can't be canceled.
*/
static void scoutfs_umount_begin(struct super_block *sb)
{
struct scoutfs_sb_info *sbi = SCOUTFS_SB(sb);
scoutfs_warn(sb, "forcing unmount, can return errors and lose unsynced data");
sbi->forced_unmount = true;
scoutfs_client_net_shutdown(sb);
}
static const struct super_operations scoutfs_super_ops = {
.alloc_inode = scoutfs_alloc_inode,
.drop_inode = scoutfs_drop_inode,
@@ -243,9 +288,8 @@ static const struct super_operations scoutfs_super_ops = {
.destroy_inode = scoutfs_destroy_inode,
.sync_fs = scoutfs_sync_fs,
.statfs = scoutfs_statfs,
.show_options = scoutfs_options_show,
.show_options = scoutfs_show_options,
.put_super = scoutfs_put_super,
.umount_begin = scoutfs_umount_begin,
};
/*
@@ -265,22 +309,6 @@ int scoutfs_write_super(struct super_block *sb,
sizeof(struct scoutfs_super_block));
}
static bool small_bdev(struct super_block *sb, char *which, u64 blocks,
struct block_device *bdev, int shift)
{
u64 size = (u64)i_size_read(bdev->bd_inode);
u64 count = size >> shift;
if (blocks > count) {
scoutfs_err(sb, "super block records %llu %s blocks, but device %u:%u size %llu only allows %llu blocks",
blocks, which, MAJOR(bdev->bd_dev), MINOR(bdev->bd_dev), size, count);
return true;
}
return false;
}
/*
* Read super, specifying bdev.
*/
@@ -288,9 +316,9 @@ static int scoutfs_read_super_from_bdev(struct super_block *sb,
struct block_device *bdev,
struct scoutfs_super_block *super_res)
{
struct scoutfs_sb_info *sbi = SCOUTFS_SB(sb);
struct scoutfs_super_block *super;
__le32 calc;
u64 blkno;
int ret;
super = kmalloc(sizeof(struct scoutfs_super_block), GFP_NOFS);
@@ -323,33 +351,59 @@ static int scoutfs_read_super_from_bdev(struct super_block *sb,
goto out;
}
if (le64_to_cpu(super->fmt_vers) < SCOUTFS_FORMAT_VERSION_MIN ||
le64_to_cpu(super->fmt_vers) > SCOUTFS_FORMAT_VERSION_MAX) {
scoutfs_err(sb, "super block has format version %llu outside of supported version range %u-%u",
le64_to_cpu(super->fmt_vers), SCOUTFS_FORMAT_VERSION_MIN,
SCOUTFS_FORMAT_VERSION_MAX);
ret = -EINVAL;
goto out;
}
/*
* fill_supers checks the fmt_vers in both supers and then decides to use it.
* From then on we verify that the supers we read have that version.
*/
if (sbi->fmt_vers != 0 && le64_to_cpu(super->fmt_vers) != sbi->fmt_vers) {
scoutfs_err(sb, "super block has format version %llu than %llu read at mount",
le64_to_cpu(super->fmt_vers), sbi->fmt_vers);
if (super->format_hash != cpu_to_le64(SCOUTFS_FORMAT_HASH)) {
scoutfs_err(sb, "super block has invalid format hash 0x%llx, expected 0x%llx",
le64_to_cpu(super->format_hash),
SCOUTFS_FORMAT_HASH);
ret = -EINVAL;
goto out;
}
/* XXX do we want more rigorous invalid super checking? */
if (small_bdev(sb, "metadata", le64_to_cpu(super->total_meta_blocks), sbi->meta_bdev,
SCOUTFS_BLOCK_LG_SHIFT) ||
small_bdev(sb, "data", le64_to_cpu(super->total_data_blocks), sb->s_bdev,
SCOUTFS_BLOCK_SM_SHIFT)) {
if (super->quorum_count == 0 ||
super->quorum_count > SCOUTFS_QUORUM_MAX_COUNT) {
scoutfs_err(sb, "super block has invalid quorum count %u, must be > 0 and <= %u",
super->quorum_count, SCOUTFS_QUORUM_MAX_COUNT);
ret = -EINVAL;
goto out;
}
blkno = (SCOUTFS_QUORUM_BLKNO + SCOUTFS_QUORUM_BLOCKS) >>
SCOUTFS_BLOCK_SM_LG_SHIFT;
if (le64_to_cpu(super->first_meta_blkno) < blkno) {
scoutfs_err(sb, "super block first meta blkno %llu is within quorum blocks",
le64_to_cpu(super->first_meta_blkno));
ret = -EINVAL;
goto out;
}
if (le64_to_cpu(super->first_meta_blkno) >
le64_to_cpu(super->last_meta_blkno)) {
scoutfs_err(sb, "super block first meta blkno %llu is greater than last meta blkno %llu",
le64_to_cpu(super->first_meta_blkno),
le64_to_cpu(super->last_meta_blkno));
ret = -EINVAL;
goto out;
}
if (le64_to_cpu(super->first_data_blkno) >
le64_to_cpu(super->last_data_blkno)) {
scoutfs_err(sb, "super block first data blkno %llu is greater than last data blkno %llu",
le64_to_cpu(super->first_data_blkno),
le64_to_cpu(super->last_data_blkno));
ret = -EINVAL;
goto out;
}
blkno = (i_size_read(sb->s_bdev->bd_inode) >>
SCOUTFS_BLOCK_SM_SHIFT) - 1;
if (le64_to_cpu(super->last_data_blkno) > blkno) {
scoutfs_err(sb, "super block last data blkno %llu is outsite device size last blkno %llu",
le64_to_cpu(super->last_data_blkno), blkno);
ret = -EINVAL;
goto out;
}
out:
@@ -455,14 +509,7 @@ static int scoutfs_read_supers(struct super_block *sb)
goto out;
}
if (le64_to_cpu(meta_super->fmt_vers) != le64_to_cpu(data_super->fmt_vers)) {
scoutfs_err(sb, "meta device format version %llu != data device format version %llu",
le64_to_cpu(meta_super->fmt_vers), le64_to_cpu(data_super->fmt_vers));
goto out;
}
sbi->fsid = le64_to_cpu(meta_super->hdr.fsid);
sbi->fmt_vers = le64_to_cpu(meta_super->fmt_vers);
sbi->super = *meta_super;
out:
kfree(meta_super);
kfree(data_super);
@@ -471,9 +518,9 @@ out:
static int scoutfs_fill_super(struct super_block *sb, void *data, int silent)
{
struct scoutfs_mount_options opts;
struct block_device *meta_bdev;
struct scoutfs_sb_info *sbi;
struct mount_options opts;
struct block_device *meta_bdev;
struct inode *inode;
int ret;
@@ -482,10 +529,7 @@ static int scoutfs_fill_super(struct super_block *sb, void *data, int silent)
sb->s_magic = SCOUTFS_SUPER_MAGIC;
sb->s_maxbytes = MAX_LFS_FILESIZE;
sb->s_op = &scoutfs_super_ops;
sb->s_d_op = &scoutfs_dentry_ops;
sb->s_export_op = &scoutfs_export_ops;
sb->s_xattr = scoutfs_xattr_handlers;
sb->s_flags |= MS_I_VERSION | MS_POSIXACL;
/* btree blocks use long lived bh->b_data refs */
mapping_set_gfp_mask(sb->s_bdev->bd_inode->i_mapping, GFP_NOFS);
@@ -498,17 +542,22 @@ static int scoutfs_fill_super(struct super_block *sb, void *data, int silent)
ret = assign_random_id(sbi);
if (ret < 0)
goto out;
return ret;
spin_lock_init(&sbi->next_ino_lock);
init_waitqueue_head(&sbi->trans_hold_wq);
spin_lock_init(&sbi->data_wait_root.lock);
sbi->data_wait_root.root = RB_ROOT;
spin_lock_init(&sbi->trans_write_lock);
INIT_DELAYED_WORK(&sbi->trans_write_work, scoutfs_trans_write_func);
init_waitqueue_head(&sbi->trans_write_wq);
scoutfs_sysfs_init_attrs(sb, &sbi->mopts_ssa);
/* parse options early for use during setup */
ret = scoutfs_options_early_setup(sb, data);
if (ret < 0)
ret = scoutfs_parse_options(sb, data, &opts);
if (ret)
goto out;
scoutfs_options_read(sb, &opts);
sbi->opts = opts;
ret = sb_set_blocksize(sb, SCOUTFS_BLOCK_SM_SIZE);
if (ret != SCOUTFS_BLOCK_SM_SIZE) {
@@ -517,7 +566,9 @@ static int scoutfs_fill_super(struct super_block *sb, void *data, int silent)
goto out;
}
meta_bdev = blkdev_get_by_path(opts.metadev_path, SCOUTFS_META_BDEV_MODE, sb);
meta_bdev =
blkdev_get_by_path(sbi->opts.metadev_path,
SCOUTFS_META_BDEV_MODE, sb);
if (IS_ERR(meta_bdev)) {
scoutfs_err(sb, "could not open metadev: error %ld",
PTR_ERR(meta_bdev));
@@ -537,32 +588,30 @@ static int scoutfs_fill_super(struct super_block *sb, void *data, int silent)
scoutfs_setup_sysfs(sb) ?:
scoutfs_setup_counters(sb) ?:
scoutfs_options_setup(sb) ?:
scoutfs_sysfs_create_attrs(sb, &sbi->mopts_ssa,
mount_options_attrs, "mount_options") ?:
scoutfs_setup_triggers(sb) ?:
scoutfs_fence_setup(sb) ?:
scoutfs_block_setup(sb) ?:
scoutfs_forest_setup(sb) ?:
scoutfs_item_setup(sb) ?:
scoutfs_inode_setup(sb) ?:
scoutfs_data_setup(sb) ?:
scoutfs_setup_trans(sb) ?:
scoutfs_omap_setup(sb) ?:
scoutfs_lock_setup(sb) ?:
scoutfs_net_setup(sb) ?:
scoutfs_recov_setup(sb) ?:
scoutfs_server_setup(sb) ?:
scoutfs_quorum_setup(sb) ?:
scoutfs_server_setup(sb) ?:
scoutfs_client_setup(sb) ?:
scoutfs_volopt_setup(sb) ?:
scoutfs_lock_rid(sb, SCOUTFS_LOCK_WRITE, 0, sbi->rid,
&sbi->rid_lock) ?:
scoutfs_trans_get_log_trees(sb) ?:
scoutfs_srch_setup(sb);
if (ret)
goto out;
/* this interruptible iget lets hung mount be aborted with ctl-c */
inode = scoutfs_iget(sb, SCOUTFS_ROOT_INO, SCOUTFS_LKF_INTERRUPTIBLE, 0);
inode = scoutfs_iget(sb, SCOUTFS_ROOT_INO);
if (IS_ERR(inode)) {
ret = PTR_ERR(inode);
if (ret == -ERESTARTSYS)
ret = -EINTR;
goto out;
}
@@ -572,15 +621,12 @@ static int scoutfs_fill_super(struct super_block *sb, void *data, int silent)
goto out;
}
/* send requests once iget progress shows we had a server */
ret = scoutfs_trans_get_log_trees(sb);
ret = scoutfs_client_advance_seq(sb, &sbi->trans_seq);
if (ret)
goto out;
/* start up background services that use everything else */
scoutfs_inode_start(sb);
scoutfs_forest_start(sb);
scoutfs_trans_restart_sync_deadline(sb);
// scoutfs_scan_orphans(sb);
ret = 0;
out:
/* on error, generic_shutdown_super calls put_super if s_root */
@@ -601,18 +647,7 @@ static struct dentry *scoutfs_mount(struct file_system_type *fs_type, int flags,
*/
static void scoutfs_kill_sb(struct super_block *sb)
{
struct scoutfs_sb_info *sbi = SCOUTFS_SB(sb);
if (sbi) {
sbi->unmounting = true;
smp_wmb();
}
if (SCOUTFS_HAS_SBI(sb)) {
scoutfs_options_stop(sb);
scoutfs_inode_orphan_stop(sb);
scoutfs_lock_unmount_begin(sb);
}
trace_scoutfs_kill_sb(sb);
kill_block_super(sb);
}
@@ -630,6 +665,7 @@ MODULE_ALIAS_FS("scoutfs");
static void teardown_module(void)
{
debugfs_remove(scoutfs_debugfs_root);
scoutfs_dir_exit();
scoutfs_inode_exit();
scoutfs_sysfs_exit();
}
@@ -644,15 +680,7 @@ static int __init scoutfs_module_init(void)
*/
__asm__ __volatile__ (
".section .note.git_describe,\"a\"\n"
".ascii \""SCOUTFS_GIT_DESCRIBE"\\n\"\n"
".previous\n");
__asm__ __volatile__ (
".section .note.scoutfs_format_version_min,\"a\"\n"
".ascii \""SCOUTFS_FORMAT_VERSION_MIN_STR"\\n\"\n"
".previous\n");
__asm__ __volatile__ (
".section .note.scoutfs_format_version_max,\"a\"\n"
".ascii \""SCOUTFS_FORMAT_VERSION_MAX_STR"\\n\"\n"
".string \""SCOUTFS_GIT_DESCRIBE"\\n\"\n"
".previous\n");
scoutfs_init_counters();
@@ -667,6 +695,7 @@ static int __init scoutfs_module_init(void)
goto out;
}
ret = scoutfs_inode_init() ?:
scoutfs_dir_init() ?:
register_filesystem(&scoutfs_fs_type);
out:
if (ret)
@@ -685,5 +714,3 @@ module_exit(scoutfs_module_exit)
MODULE_AUTHOR("Zach Brown <zab@versity.com>");
MODULE_LICENSE("GPL");
MODULE_INFO(git_describe, SCOUTFS_GIT_DESCRIBE);
MODULE_INFO(scoutfs_format_version_min, SCOUTFS_FORMAT_VERSION_MIN_STR);
MODULE_INFO(scoutfs_format_version_max, SCOUTFS_FORMAT_VERSION_MAX_STR);

View File

@@ -26,24 +26,20 @@ struct net_info;
struct block_info;
struct forest_info;
struct srch_info;
struct recov_info;
struct omap_info;
struct volopt_info;
struct fence_info;
struct scoutfs_sb_info {
struct super_block *sb;
/* assigned once at the start of each mount, read-only */
u64 fsid;
u64 rid;
u64 fmt_vers;
struct scoutfs_lock *rid_lock;
struct scoutfs_super_block super;
struct block_device *meta_bdev;
spinlock_t next_ino_lock;
struct options_info *options_info;
struct data_info *data_info;
struct inode_sb_info *inode_sb_info;
struct btree_info *btree_info;
@@ -52,32 +48,40 @@ struct scoutfs_sb_info {
struct block_info *block_info;
struct forest_info *forest_info;
struct srch_info *srch_info;
struct omap_info *omap_info;
struct volopt_info *volopt_info;
struct item_cache_info *item_cache_info;
struct fence_info *fence_info;
wait_queue_head_t trans_hold_wq;
struct task_struct *trans_task;
/* tracks tasks waiting for data extents */
struct scoutfs_data_wait_root data_wait_root;
/* set as transaction opens with trans holders excluded */
spinlock_t trans_write_lock;
u64 trans_write_count;
u64 trans_seq;
int trans_write_ret;
struct delayed_work trans_write_work;
wait_queue_head_t trans_write_wq;
struct workqueue_struct *trans_write_workq;
bool trans_deadline_expired;
struct trans_info *trans_info;
struct lock_info *lock_info;
struct lock_server_info *lock_server_info;
struct client_info *client_info;
struct server_info *server_info;
struct recov_info *recov_info;
struct sysfs_info *sfsinfo;
struct scoutfs_counters *counters;
struct scoutfs_triggers *triggers;
struct mount_options opts;
struct options_sb_info *options;
struct scoutfs_sysfs_attrs mopts_ssa;
struct dentry *debug_root;
bool forced_unmount;
bool unmounting;
bool shutdown;
unsigned long corruption_messages_once[SC_NR_LONGS];
};
@@ -99,26 +103,6 @@ static inline bool SCOUTFS_IS_META_BDEV(struct scoutfs_super_block *super_block)
#define SCOUTFS_META_BDEV_MODE (FMODE_READ | FMODE_WRITE | FMODE_EXCL)
static inline bool scoutfs_forcing_unmount(struct super_block *sb)
{
struct scoutfs_sb_info *sbi = SCOUTFS_SB(sb);
return sbi->forced_unmount;
}
/*
* True if we're shutting down the system and can be used as a coarse
* indicator that we can avoid doing some work that no longer makes
* sense.
*/
static inline bool scoutfs_unmounting(struct super_block *sb)
{
struct scoutfs_sb_info *sbi = SCOUTFS_SB(sb);
smp_rmb();
return !sbi || sbi->unmounting;
}
/*
* A small string embedded in messages that's used to identify a
* specific mount. It's the three most significant bytes of the fsid
@@ -134,14 +118,14 @@ static inline bool scoutfs_unmounting(struct super_block *sb)
(int)(le64_to_cpu(fsid) >> SCSB_SHIFT), \
(int)(le64_to_cpu(rid) >> SCSB_SHIFT)
#define SCSB_ARGS(sb) \
(int)(SCOUTFS_SB(sb)->fsid >> SCSB_SHIFT), \
(int)(le64_to_cpu(SCOUTFS_SB(sb)->super.hdr.fsid) >> SCSB_SHIFT), \
(int)(SCOUTFS_SB(sb)->rid >> SCSB_SHIFT)
#define SCSB_TRACE_FIELDS \
__field(__u64, fsid) \
__field(__u64, rid)
#define SCSB_TRACE_ASSIGN(sb) \
__entry->fsid = SCOUTFS_HAS_SBI(sb) ? \
SCOUTFS_SB(sb)->fsid : 0; \
le64_to_cpu(SCOUTFS_SB(sb)->super.hdr.fsid) : 0;\
__entry->rid = SCOUTFS_HAS_SBI(sb) ? \
SCOUTFS_SB(sb)->rid : 0;
#define SCSB_TRACE_ARGS \
@@ -156,4 +140,6 @@ int scoutfs_write_super(struct super_block *sb,
/* to keep this out of the ioctl.h public interface definition */
long scoutfs_ioctl(struct file *file, unsigned int cmd, unsigned long arg);
__le64 scoutfs_clock_sync_id(void);
#endif

View File

@@ -37,32 +37,14 @@ struct attr_funcs {
#define ATTR_FUNCS_RO(_name) \
static struct attr_funcs _name##_attr_funcs = __ATTR_RO(_name)
static ssize_t data_device_maj_min_show(struct kobject *kobj, struct attribute *attr, char *buf)
{
struct super_block *sb = KOBJ_TO_SB(kobj, sb_id_kobj);
return snprintf(buf, PAGE_SIZE, "%u:%u\n",
MAJOR(sb->s_bdev->bd_dev), MINOR(sb->s_bdev->bd_dev));
}
ATTR_FUNCS_RO(data_device_maj_min);
static ssize_t format_version_show(struct kobject *kobj, struct attribute *attr,
char *buf)
{
struct super_block *sb = KOBJ_TO_SB(kobj, sb_id_kobj);
struct scoutfs_sb_info *sbi = SCOUTFS_SB(sb);
return snprintf(buf, PAGE_SIZE, "%llu\n", sbi->fmt_vers);
}
ATTR_FUNCS_RO(format_version);
static ssize_t fsid_show(struct kobject *kobj, struct attribute *attr,
char *buf)
{
struct super_block *sb = KOBJ_TO_SB(kobj, sb_id_kobj);
struct scoutfs_sb_info *sbi = SCOUTFS_SB(sb);
struct scoutfs_super_block *super = &SCOUTFS_SB(sb)->super;
return snprintf(buf, PAGE_SIZE, "%016llx\n", sbi->fsid);
return snprintf(buf, PAGE_SIZE, "%016llx\n",
le64_to_cpu(super->hdr.fsid));
}
ATTR_FUNCS_RO(fsid);
@@ -109,8 +91,6 @@ static ssize_t attr_funcs_show(struct kobject *kobj, struct attribute *attr,
static struct attribute *sb_id_attrs[] = {
&data_device_maj_min_attr_funcs.attr,
&format_version_attr_funcs.attr,
&fsid_attr_funcs.attr,
&rid_attr_funcs.attr,
NULL,
@@ -151,10 +131,9 @@ void scoutfs_sysfs_init_attrs(struct super_block *sb,
* If this returns success then the file will be visible and show can
* be called until unmount.
*/
int scoutfs_sysfs_create_attrs_parent(struct super_block *sb,
struct kobject *parent,
struct scoutfs_sysfs_attrs *ssa,
struct attribute **attrs, char *fmt, ...)
int scoutfs_sysfs_create_attrs(struct super_block *sb,
struct scoutfs_sysfs_attrs *ssa,
struct attribute **attrs, char *fmt, ...)
{
va_list args;
size_t name_len;
@@ -195,8 +174,8 @@ int scoutfs_sysfs_create_attrs_parent(struct super_block *sb,
goto out;
}
ret = kobject_init_and_add(&ssa->kobj, &ssa->ktype, parent,
"%s", ssa->name);
ret = kobject_init_and_add(&ssa->kobj, &ssa->ktype,
scoutfs_sysfs_sb_dir(sb), "%s", ssa->name);
out:
if (ret) {
kfree(ssa->name);
@@ -267,7 +246,7 @@ int __init scoutfs_sysfs_init(void)
return 0;
}
void scoutfs_sysfs_exit(void)
void __exit scoutfs_sysfs_exit(void)
{
if (scoutfs_kset)
kset_unregister(scoutfs_kset);

View File

@@ -10,8 +10,6 @@
#define SCOUTFS_ATTR_RO(_name) \
static struct kobj_attribute scoutfs_attr_##_name = __ATTR_RO(_name)
#define SCOUTFS_ATTR_RW(_name) \
static struct kobj_attribute scoutfs_attr_##_name = __ATTR_RW(_name)
#define SCOUTFS_ATTR_PTR(_name) \
&scoutfs_attr_##_name.attr
@@ -36,14 +34,9 @@ struct scoutfs_sysfs_attrs {
void scoutfs_sysfs_init_attrs(struct super_block *sb,
struct scoutfs_sysfs_attrs *ssa);
int scoutfs_sysfs_create_attrs_parent(struct super_block *sb,
struct kobject *parent,
struct scoutfs_sysfs_attrs *ssa,
struct attribute **attrs, char *fmt, ...);
#define scoutfs_sysfs_create_attrs(sb, ssa, attrs, fmt, args...) \
scoutfs_sysfs_create_attrs_parent(sb, scoutfs_sysfs_sb_dir(sb), \
ssa, attrs, fmt, ##args)
int scoutfs_sysfs_create_attrs(struct super_block *sb,
struct scoutfs_sysfs_attrs *ssa,
struct attribute **attrs, char *fmt, ...);
void scoutfs_sysfs_destroy_attrs(struct super_block *sb,
struct scoutfs_sysfs_attrs *ssa);
@@ -53,6 +46,6 @@ int scoutfs_setup_sysfs(struct super_block *sb);
void scoutfs_destroy_sysfs(struct super_block *sb);
int __init scoutfs_sysfs_init(void);
void scoutfs_sysfs_exit(void);
void __exit scoutfs_sysfs_exit(void);
#endif

View File

@@ -17,7 +17,6 @@
#include <linux/atomic.h>
#include <linux/writeback.h>
#include <linux/slab.h>
#include <linux/delay.h>
#include "super.h"
#include "trans.h"
@@ -40,46 +39,51 @@
* track the relationships between dirty blocks so there's only ever one
* transaction being built.
*
* Committing the current dirty transaction can be triggered by sync, a
* regular background commit interval, reaching a dirty block threshold,
* or the transaction running out of its private allocator resources.
* Once all the current holders release the writing func writes out the
* dirty blocks while excluding holders until it finishes.
* The copy of the on-disk super block in the fs sb info has its header
* sequence advanced so that new dirty blocks inherit this dirty
* sequence number. It's only advanced once all those dirty blocks are
* reachable after having first written them all out and then the new
* super with that seq. It's first incremented at mount.
*
* Unfortunately writing holders can nest. We track nested hold callers
* with the per-task journal_info pointer to avoid deadlocks between
* holders that might otherwise wait for a pending commit.
* Unfortunately writers can nest. We don't bother trying to special
* case holding a transaction that you're already holding because that
* requires per-task storage. We just let anyone hold transactions
* regardless of waiters waiting to write, which risks waiters waiting a
* very long time.
*/
/* sync dirty data at least this often */
#define TRANS_SYNC_DELAY (HZ * 10)
/*
* XXX move the rest of the super trans_ fields here.
*/
struct trans_info {
struct super_block *sb;
atomic_t holders;
spinlock_t lock;
unsigned reserved_items;
unsigned reserved_vals;
unsigned holders;
bool writing;
struct scoutfs_log_trees lt;
struct scoutfs_alloc alloc;
struct scoutfs_block_writer wri;
wait_queue_head_t hold_wq;
struct task_struct *task;
spinlock_t write_lock;
u64 write_count;
int write_ret;
struct delayed_work write_work;
wait_queue_head_t write_wq;
struct workqueue_struct *write_workq;
bool deadline_expired;
};
#define DECLARE_TRANS_INFO(sb, name) \
struct trans_info *name = SCOUTFS_SB(sb)->trans_info
/* avoid the high sign bit out of an abundance of caution*/
#define TRANS_HOLDERS_WRITE_FUNC_BIT (1 << 30)
#define TRANS_HOLDERS_COUNT_MASK (TRANS_HOLDERS_WRITE_FUNC_BIT - 1)
static bool drained_holders(struct trans_info *tri)
{
bool drained;
spin_lock(&tri->lock);
tri->writing = true;
drained = tri->holders == 0;
spin_unlock(&tri->lock);
return drained;
}
static int commit_btrees(struct super_block *sb)
{
@@ -101,7 +105,6 @@ static int commit_btrees(struct super_block *sb)
*/
int scoutfs_trans_get_log_trees(struct super_block *sb)
{
struct scoutfs_sb_info *sbi = SCOUTFS_SB(sb);
DECLARE_TRANS_INFO(sb, tri);
struct scoutfs_log_trees lt;
int ret = 0;
@@ -114,11 +117,6 @@ int scoutfs_trans_get_log_trees(struct super_block *sb)
scoutfs_forest_init_btrees(sb, &tri->alloc, &tri->wri, &lt);
scoutfs_data_init_btrees(sb, &tri->alloc, &tri->wri, &lt);
/* first set during mount from 0 to nonzero allows commits */
spin_lock(&tri->write_lock);
sbi->trans_seq = le64_to_cpu(lt.get_trans_seq);
spin_unlock(&tri->write_lock);
}
return ret;
}
@@ -130,35 +128,6 @@ bool scoutfs_trans_has_dirty(struct super_block *sb)
return scoutfs_block_writer_has_dirty(sb, &tri->wri);
}
/*
* This is racing with wait_event conditions, make sure our atomic
* stores and waitqueue loads are ordered.
*/
static void sub_holders_and_wake(struct super_block *sb, int val)
{
DECLARE_TRANS_INFO(sb, tri);
atomic_sub(val, &tri->holders);
smp_mb(); /* make sure sub is visible before we wake */
if (waitqueue_active(&tri->hold_wq))
wake_up(&tri->hold_wq);
}
/*
* called as a wait_event condition, needs to be careful to not change
* task state and is racing with waking paths that sub_return, test, and
* wake.
*/
static bool drained_holders(struct trans_info *tri)
{
int holders;
smp_mb(); /* make sure task in wait_event queue before atomic read */
holders = atomic_read(&tri->holders) & TRANS_HOLDERS_COUNT_MASK;
return holders == 0;
}
/*
* This work func is responsible for writing out all the dirty blocks
* that make up the current dirty transaction. It prevents writers from
@@ -169,93 +138,90 @@ static bool drained_holders(struct trans_info *tri)
* functions that would try to hold the transaction. We record the task
* whose committing the transaction so that holding won't deadlock.
*
* Once we clear the write func bit in holders then waiting holders can
* enter the transaction and continue modifying the transaction. Once
* we start writing we consider the transaction done and won't exit,
* clearing the write func bit, until get_log_trees has opened the next
* transaction. The exception is forced unmount which is allowed to
* generate errors and throw away data.
* Any dirty block had to have allocated a new blkno which would have
* created dirty allocator metadata blocks. We can avoid writing
* entirely if we don't have any dirty metadata blocks. This is
* important because we don't try to serialize this work during
* unmount.. we can execute as the vfs is shutting down.. we need to
* decide that nothing is dirty without calling the vfs at all.
*
* This means that the only way fsync can return an error is if we're in
* forced unmount.
* We first try to sync the dirty inodes and write their dirty data blocks,
* then we write all our dirty metadata blocks, and only when those succeed
* do we write the new super that references all of these newly written blocks.
*
* If there are write errors then blocks are kept dirty in memory and will
* be written again at the next sync.
*/
void scoutfs_trans_write_func(struct work_struct *work)
{
struct trans_info *tri = container_of(work, struct trans_info, write_work.work);
struct super_block *sb = tri->sb;
struct scoutfs_sb_info *sbi = SCOUTFS_SB(sb);
bool retrying = false;
struct scoutfs_sb_info *sbi = container_of(work, struct scoutfs_sb_info,
trans_write_work.work);
struct super_block *sb = sbi->sb;
DECLARE_TRANS_INFO(sb, tri);
u64 trans_seq = sbi->trans_seq;
char *s = NULL;
int ret = 0;
tri->task = current;
sbi->trans_task = current;
/* mark that we're writing so holders wait for us to finish and clear our bit */
atomic_add(TRANS_HOLDERS_WRITE_FUNC_BIT, &tri->holders);
wait_event(sbi->trans_hold_wq, drained_holders(tri));
wait_event(tri->hold_wq, drained_holders(tri));
trace_scoutfs_trans_write_func(sb,
scoutfs_block_writer_dirty_bytes(sb, &tri->wri));
/* mount hasn't opened first transaction yet, still complete sync */
if (sbi->trans_seq == 0) {
ret = 0;
if (!scoutfs_block_writer_has_dirty(sb, &tri->wri) &&
!scoutfs_item_dirty_pages(sb)) {
if (sbi->trans_deadline_expired) {
/*
* If we're not writing data then we only advance the
* seq at the sync deadline interval. This keeps idle
* mounts from pinning a seq and stopping readers of the
* seq indices but doesn't send a message for every sync
* syscall.
*/
ret = scoutfs_client_advance_seq(sb, &trans_seq);
if (ret < 0)
s = "clean advance seq";
}
goto out;
}
if (scoutfs_forcing_unmount(sb)) {
ret = -EIO;
goto out;
}
trace_scoutfs_trans_write_func(sb, scoutfs_block_writer_dirty_bytes(sb, &tri->wri),
scoutfs_item_dirty_pages(sb));
if (tri->deadline_expired)
if (sbi->trans_deadline_expired)
scoutfs_inc_counter(sb, trans_commit_timer);
scoutfs_inc_counter(sb, trans_commit_written);
do {
ret = (s = "data submit", scoutfs_inode_walk_writeback(sb, true)) ?:
(s = "item dirty", scoutfs_item_write_dirty(sb)) ?:
(s = "data prepare", scoutfs_data_prepare_commit(sb)) ?:
(s = "alloc prepare", scoutfs_alloc_prepare_commit(sb, &tri->alloc,
&tri->wri)) ?:
(s = "meta write", scoutfs_block_writer_write(sb, &tri->wri)) ?:
(s = "data wait", scoutfs_inode_walk_writeback(sb, false)) ?:
(s = "commit log trees", commit_btrees(sb)) ?:
scoutfs_item_write_done(sb) ?:
(s = "get log trees", scoutfs_trans_get_log_trees(sb));
if (ret < 0) {
if (!retrying) {
scoutfs_warn(sb, "critical transaction commit failure: %s = %d, retrying",
s, ret);
retrying = true;
}
if (scoutfs_forcing_unmount(sb)) {
ret = -EIO;
break;
}
msleep(2 * MSEC_PER_SEC);
} else if (retrying) {
scoutfs_info(sb, "retried transaction commit succeeded");
}
} while (ret < 0);
/* XXX this all needs serious work for dealing with errors */
ret = (s = "data submit", scoutfs_inode_walk_writeback(sb, true)) ?:
(s = "item dirty", scoutfs_item_write_dirty(sb)) ?:
(s = "data prepare", scoutfs_data_prepare_commit(sb)) ?:
(s = "alloc prepare", scoutfs_alloc_prepare_commit(sb,
&tri->alloc, &tri->wri)) ?:
(s = "meta write", scoutfs_block_writer_write(sb, &tri->wri)) ?:
(s = "data wait", scoutfs_inode_walk_writeback(sb, false)) ?:
(s = "commit log trees", commit_btrees(sb)) ?:
scoutfs_item_write_done(sb) ?:
(s = "advance seq", scoutfs_client_advance_seq(sb, &trans_seq)) ?:
(s = "get log trees", scoutfs_trans_get_log_trees(sb));
out:
spin_lock(&tri->write_lock);
tri->write_count++;
tri->write_ret = ret;
spin_unlock(&tri->write_lock);
wake_up(&tri->write_wq);
if (ret < 0)
scoutfs_err(sb, "critical transaction commit failure: %s, %d",
s, ret);
/* we're done, wake waiting holders */
sub_holders_and_wake(sb, TRANS_HOLDERS_WRITE_FUNC_BIT);
spin_lock(&sbi->trans_write_lock);
sbi->trans_write_count++;
sbi->trans_write_ret = ret;
sbi->trans_seq = trans_seq;
spin_unlock(&sbi->trans_write_lock);
wake_up(&sbi->trans_write_wq);
tri->task = NULL;
spin_lock(&tri->lock);
tri->writing = false;
spin_unlock(&tri->lock);
wake_up(&sbi->trans_hold_wq);
sbi->trans_task = NULL;
scoutfs_trans_restart_sync_deadline(sb);
}
@@ -266,17 +232,17 @@ struct write_attempt {
};
/* this is called as a wait_event() condition so it can't change task state */
static int write_attempted(struct super_block *sb, struct write_attempt *attempt)
static int write_attempted(struct scoutfs_sb_info *sbi,
struct write_attempt *attempt)
{
DECLARE_TRANS_INFO(sb, tri);
int done = 1;
spin_lock(&tri->write_lock);
if (tri->write_count > attempt->count)
attempt->ret = tri->write_ret;
spin_lock(&sbi->trans_write_lock);
if (sbi->trans_write_count > attempt->count)
attempt->ret = sbi->trans_write_ret;
else
done = 0;
spin_unlock(&tri->write_lock);
spin_unlock(&sbi->trans_write_lock);
return done;
}
@@ -286,12 +252,10 @@ static int write_attempted(struct super_block *sb, struct write_attempt *attempt
* We always have delayed sync work pending but the caller wants it
* to execute immediately.
*/
static void queue_trans_work(struct super_block *sb)
static void queue_trans_work(struct scoutfs_sb_info *sbi)
{
DECLARE_TRANS_INFO(sb, tri);
tri->deadline_expired = false;
mod_delayed_work(tri->write_workq, &tri->write_work, 0);
sbi->trans_deadline_expired = false;
mod_delayed_work(sbi->trans_write_workq, &sbi->trans_write_work, 0);
}
/*
@@ -304,24 +268,26 @@ static void queue_trans_work(struct super_block *sb)
*/
int scoutfs_trans_sync(struct super_block *sb, int wait)
{
DECLARE_TRANS_INFO(sb, tri);
struct write_attempt attempt = { .ret = 0 };
struct scoutfs_sb_info *sbi = SCOUTFS_SB(sb);
struct write_attempt attempt;
int ret;
if (!wait) {
queue_trans_work(sb);
queue_trans_work(sbi);
return 0;
}
spin_lock(&tri->write_lock);
attempt.count = tri->write_count;
spin_unlock(&tri->write_lock);
spin_lock(&sbi->trans_write_lock);
attempt.count = sbi->trans_write_count;
spin_unlock(&sbi->trans_write_lock);
queue_trans_work(sb);
queue_trans_work(sbi);
wait_event(tri->write_wq, write_attempted(sb, &attempt));
ret = attempt.ret;
ret = wait_event_interruptible(sbi->trans_write_wq,
write_attempted(sbi, &attempt));
if (ret == 0)
ret = attempt.ret;
return ret;
}
@@ -337,91 +303,72 @@ int scoutfs_file_fsync(struct file *file, loff_t start, loff_t end,
void scoutfs_trans_restart_sync_deadline(struct super_block *sb)
{
DECLARE_TRANS_INFO(sb, tri);
struct scoutfs_sb_info *sbi = SCOUTFS_SB(sb);
tri->deadline_expired = true;
mod_delayed_work(tri->write_workq, &tri->write_work,
sbi->trans_deadline_expired = true;
mod_delayed_work(sbi->trans_write_workq, &sbi->trans_write_work,
TRANS_SYNC_DELAY);
}
/*
* We store nested holders in the lower bits of journal_info. We use
* some higher bits as a magic value to detect if something goes
* horribly wrong and it gets clobbered.
* Each thread reserves space in the segment for their dirty items while
* they hold the transaction. This is calculated before the first
* transaction hold is acquired. It includes all the potential nested
* item manipulation that could happen with the transaction held.
* Including nested holds avoids having to deal with writing out partial
* transactions while a caller still holds the transaction.
*/
#define TRANS_JI_MAGIC 0xd5700000
#define TRANS_JI_MAGIC_MASK 0xfff00000
#define TRANS_JI_COUNT_MASK 0x000fffff
/* returns true if a caller already had a holder counted in journal_info */
static bool inc_journal_info_holders(void)
{
unsigned long holders = (unsigned long)current->journal_info;
WARN_ON_ONCE(holders != 0 && ((holders & TRANS_JI_MAGIC_MASK) != TRANS_JI_MAGIC));
if (holders == 0)
holders = TRANS_JI_MAGIC;
holders++;
current->journal_info = (void *)holders;
return (holders > (TRANS_JI_MAGIC | 1));
}
static void dec_journal_info_holders(void)
{
unsigned long holders = (unsigned long)current->journal_info;
WARN_ON_ONCE(holders != 0 && ((holders & TRANS_JI_MAGIC_MASK) != TRANS_JI_MAGIC));
WARN_ON_ONCE((holders & TRANS_JI_COUNT_MASK) == 0);
holders--;
if (holders == TRANS_JI_MAGIC)
holders = 0;
current->journal_info = (void *)holders;
}
#define SCOUTFS_RESERVATION_MAGIC 0xd57cd13b
struct scoutfs_reservation {
unsigned magic;
unsigned holders;
struct scoutfs_item_count reserved;
struct scoutfs_item_count actual;
};
/*
* This is called as the wait_event condition for holding a transaction.
* Increment the holder count unless the writer is present. We return
* false to wait until the writer finishes and wakes us.
* Try to hold the transaction. If a caller already holds the trans then
* we piggy back on their hold. We wait if the writer is trying to
* write out the transation. And if our items won't fit then we kick off
* a write.
*
* This can be racing with itself while there's no waiters. We retry
* the cmpxchg instead of returning and waiting.
* This is called as a condition for wait_event. It is very limited in
* the locking (blocking) it can do because the caller has set the task
* state before testing the condition safely race with waking after
* setting the condition. Our checking the amount of dirty metadata
* blocks and free data blocks is racy, but we don't mind the risk of
* delaying or prematurely forcing commits.
*/
static bool inc_holders_unless_writer(struct trans_info *tri)
static bool acquired_hold(struct super_block *sb,
struct scoutfs_reservation *rsv,
const struct scoutfs_item_count *cnt)
{
int holders;
struct scoutfs_sb_info *sbi = SCOUTFS_SB(sb);
DECLARE_TRANS_INFO(sb, tri);
bool acquired = false;
unsigned items;
unsigned vals;
do {
smp_mb(); /* make sure we read after wait puts task in queue */
holders = atomic_read(&tri->holders);
if (holders & TRANS_HOLDERS_WRITE_FUNC_BIT)
return false;
spin_lock(&tri->lock);
} while (atomic_cmpxchg(&tri->holders, holders, holders + 1) != holders);
trace_scoutfs_trans_acquired_hold(sb, cnt, rsv, rsv->holders,
&rsv->reserved, &rsv->actual,
tri->holders, tri->writing,
tri->reserved_items,
tri->reserved_vals);
return true;
}
/* use a caller's existing reservation */
if (rsv->holders)
goto hold;
/*
* As we drop the last trans holder we try to wake a writing thread that
* was waiting for us to finish.
*/
static void release_holders(struct super_block *sb)
{
dec_journal_info_holders();
sub_holders_and_wake(sb, 1);
}
/* wait until the writing thread is finished */
if (tri->writing)
goto out;
/* see if we can reserve space for our item count */
items = tri->reserved_items + cnt->items;
vals = tri->reserved_vals + cnt->vals;
/*
* The caller has incremented holders so it is blocking commits. We
* make some quick checks to see if we need to trigger and wait for
* another commit before proceeding.
*/
static bool commit_before_hold(struct super_block *sb, struct trans_info *tri)
{
/*
* In theory each dirty item page could be straddling two full
* blocks, requiring 4 allocations for each item cache page.
@@ -431,9 +378,11 @@ static bool commit_before_hold(struct super_block *sb, struct trans_info *tri)
* that it accounts for having to dirty parent blocks and
* whatever dirtying is done during the transaction hold.
*/
if (scoutfs_alloc_meta_low(sb, &tri->alloc, scoutfs_item_dirty_pages(sb) * 2)) {
if (scoutfs_alloc_meta_low(sb, &tri->alloc,
scoutfs_item_dirty_pages(sb) * 2)) {
scoutfs_inc_counter(sb, trans_commit_dirty_meta_full);
return true;
queue_trans_work(sbi);
goto out;
}
/*
@@ -445,100 +394,70 @@ static bool commit_before_hold(struct super_block *sb, struct trans_info *tri)
*/
if (scoutfs_alloc_meta_low(sb, &tri->alloc, 16)) {
scoutfs_inc_counter(sb, trans_commit_meta_alloc_low);
return true;
queue_trans_work(sbi);
goto out;
}
/* if we're low and can't refill then alloc could empty and return enospc */
if (scoutfs_data_alloc_should_refill(sb, SCOUTFS_ALLOC_DATA_REFILL_THRESH)) {
/* Try to refill data allocator before premature enospc */
if (scoutfs_data_alloc_free_bytes(sb) <= SCOUTFS_TRANS_DATA_ALLOC_LWM) {
scoutfs_inc_counter(sb, trans_commit_data_alloc_low);
return true;
queue_trans_work(sbi);
goto out;
}
return false;
tri->reserved_items = items;
tri->reserved_vals = vals;
rsv->reserved.items = cnt->items;
rsv->reserved.vals = cnt->vals;
hold:
rsv->holders++;
tri->holders++;
acquired = true;
out:
spin_unlock(&tri->lock);
return acquired;
}
/*
* called as a wait_event condition, needs to be careful to not change
* task state and is racing with waking paths that sub_return, test, and
* wake.
*/
static bool holders_no_writer(struct trans_info *tri)
{
smp_mb(); /* make sure task in wait_event queue before atomic read */
return !(atomic_read(&tri->holders) & TRANS_HOLDERS_WRITE_FUNC_BIT);
}
/*
* Try to hold the transaction. Holding the transaction prevents it
* from being committed. If a transaction is currently being written
* then we'll block until it's done and our hold can be granted.
*
* If a caller already holds the trans then we unconditionally acquire
* our hold and return to avoid deadlocks with our caller, the writing
* thread, and us. We record nested holds in a call stack with the
* journal_info pointer in the task_struct.
*
* The writing thread marks itself as a global trans_task which
* short-circuits all the hold machinery so it can call code that would
* otherwise try to hold transactions while it is writing.
*
* If the caller is adding metadata items that will eventually consume
* free space -- not dirtying existing items or adding deletion items --
* then we can return enospc if our metadata allocator indicates that
* we're low on space.
*/
int scoutfs_hold_trans(struct super_block *sb, bool allocing)
int scoutfs_hold_trans(struct super_block *sb,
const struct scoutfs_item_count cnt)
{
struct scoutfs_sb_info *sbi = SCOUTFS_SB(sb);
DECLARE_TRANS_INFO(sb, tri);
u64 seq;
struct scoutfs_reservation *rsv;
int ret;
if (current == tri->task)
/*
* Caller shouldn't provide garbage counts, nor counts that
* can't fit in segments by themselves.
*/
if (WARN_ON_ONCE(cnt.items <= 0 || cnt.vals < 0))
return -EINVAL;
if (current == sbi->trans_task)
return 0;
for (;;) {
/* shouldn't get holders until mount finishes, (not locking for cheap test) */
if (WARN_ON_ONCE(sbi->trans_seq == 0)) {
ret = -EINVAL;
break;
}
rsv = current->journal_info;
if (rsv == NULL) {
rsv = kzalloc(sizeof(struct scoutfs_reservation), GFP_NOFS);
if (!rsv)
return -ENOMEM;
/* if a caller already has a hold we acquire unconditionally */
if (inc_journal_info_holders()) {
atomic_inc(&tri->holders);
ret = 0;
break;
}
/* wait until the writer work is finished */
if (!inc_holders_unless_writer(tri)) {
dec_journal_info_holders();
wait_event(tri->hold_wq, holders_no_writer(tri));
continue;
}
/* return enospc if server is into reserved blocks and we're allocating */
if (allocing && scoutfs_alloc_test_flag(sb, &tri->alloc, SCOUTFS_ALLOC_FLAG_LOW)) {
release_holders(sb);
ret = -ENOSPC;
break;
}
/* see if we need to trigger and wait for a commit before holding */
if (commit_before_hold(sb, tri)) {
seq = scoutfs_trans_sample_seq(sb);
release_holders(sb);
queue_trans_work(sb);
wait_event(tri->hold_wq, scoutfs_trans_sample_seq(sb) != seq);
continue;
}
ret = 0;
break;
rsv->magic = SCOUTFS_RESERVATION_MAGIC;
current->journal_info = rsv;
}
trace_scoutfs_hold_trans(sb, current->journal_info, atomic_read(&tri->holders), ret);
BUG_ON(rsv->magic != SCOUTFS_RESERVATION_MAGIC);
ret = wait_event_interruptible(sbi->trans_hold_wq,
acquired_hold(sb, rsv, &cnt));
if (ret && rsv->holders == 0) {
current->journal_info = NULL;
kfree(rsv);
}
return ret;
}
@@ -549,21 +468,86 @@ int scoutfs_hold_trans(struct super_block *sb, bool allocing)
*/
bool scoutfs_trans_held(void)
{
unsigned long holders = (unsigned long)current->journal_info;
struct scoutfs_reservation *rsv = current->journal_info;
return (holders != 0 && ((holders & TRANS_JI_MAGIC_MASK) == TRANS_JI_MAGIC));
return rsv && rsv->magic == SCOUTFS_RESERVATION_MAGIC;
}
void scoutfs_release_trans(struct super_block *sb)
/*
* Record a transaction holder's individual contribution to the dirty
* items in the current transaction. We're making sure that the
* reservation matches the possible item manipulations while they hold
* the reservation.
*
* It is possible and legitimate for an individual contribution to be
* negative if they delete dirty items. The item cache makes sure that
* the total dirty item count doesn't fall below zero.
*/
void scoutfs_trans_track_item(struct super_block *sb, signed items,
signed vals)
{
DECLARE_TRANS_INFO(sb, tri);
struct scoutfs_sb_info *sbi = SCOUTFS_SB(sb);
struct scoutfs_reservation *rsv = current->journal_info;
if (current == tri->task)
if (current == sbi->trans_task)
return;
release_holders(sb);
BUG_ON(!rsv || rsv->magic != SCOUTFS_RESERVATION_MAGIC);
trace_scoutfs_release_trans(sb, current->journal_info, atomic_read(&tri->holders), 0);
rsv->actual.items += items;
rsv->actual.vals += vals;
trace_scoutfs_trans_track_item(sb, items, vals, rsv->actual.items,
rsv->actual.vals, rsv->reserved.items,
rsv->reserved.vals);
WARN_ON_ONCE(rsv->actual.items > rsv->reserved.items);
WARN_ON_ONCE(rsv->actual.vals > rsv->reserved.vals);
}
/*
* As we drop the last hold in the reservation we try and wake other
* hold attempts that were waiting for space. As we drop the last trans
* holder we try to wake a writing thread that was waiting for us to
* finish.
*/
void scoutfs_release_trans(struct super_block *sb)
{
struct scoutfs_sb_info *sbi = SCOUTFS_SB(sb);
struct scoutfs_reservation *rsv;
DECLARE_TRANS_INFO(sb, tri);
bool wake = false;
if (current == sbi->trans_task)
return;
rsv = current->journal_info;
BUG_ON(!rsv || rsv->magic != SCOUTFS_RESERVATION_MAGIC);
spin_lock(&tri->lock);
trace_scoutfs_release_trans(sb, rsv, rsv->holders, &rsv->reserved,
&rsv->actual, tri->holders, tri->writing,
tri->reserved_items, tri->reserved_vals);
BUG_ON(rsv->holders <= 0);
BUG_ON(tri->holders <= 0);
if (--rsv->holders == 0) {
tri->reserved_items -= rsv->reserved.items;
tri->reserved_vals -= rsv->reserved.vals;
current->journal_info = NULL;
kfree(rsv);
wake = true;
}
if (--tri->holders == 0)
wake = true;
spin_unlock(&tri->lock);
if (wake)
wake_up(&sbi->trans_hold_wq);
}
/*
@@ -573,13 +557,12 @@ void scoutfs_release_trans(struct super_block *sb)
*/
u64 scoutfs_trans_sample_seq(struct super_block *sb)
{
DECLARE_TRANS_INFO(sb, tri);
struct scoutfs_sb_info *sbi = SCOUTFS_SB(sb);
u64 ret;
spin_lock(&tri->write_lock);
spin_lock(&sbi->trans_write_lock);
ret = sbi->trans_seq;
spin_unlock(&tri->write_lock);
spin_unlock(&sbi->trans_write_lock);
return ret;
}
@@ -593,17 +576,12 @@ int scoutfs_setup_trans(struct super_block *sb)
if (!tri)
return -ENOMEM;
tri->sb = sb;
atomic_set(&tri->holders, 0);
spin_lock_init(&tri->lock);
scoutfs_block_writer_init(sb, &tri->wri);
spin_lock_init(&tri->write_lock);
INIT_DELAYED_WORK(&tri->write_work, scoutfs_trans_write_func);
init_waitqueue_head(&tri->write_wq);
init_waitqueue_head(&tri->hold_wq);
tri->write_workq = alloc_workqueue("scoutfs_trans", WQ_UNBOUND, 1);
if (!tri->write_workq) {
sbi->trans_write_workq = alloc_workqueue("scoutfs_trans",
WQ_UNBOUND, 1);
if (!sbi->trans_write_workq) {
kfree(tri);
return -ENOMEM;
}
@@ -614,15 +592,8 @@ int scoutfs_setup_trans(struct super_block *sb)
}
/*
* While the vfs will have done an fs level sync before calling
* put_super, we may have done work down in our level after all the fs
* ops were done. An example is final inode deletion in iput, that's
* done in generic_shutdown_super after the sync and before calling our
* put_super.
*
* So we always try to write any remaining dirty transactions before
* shutting down. Typically there won't be any dirty data and the
* worker will just return.
* kill_sb calls sync before getting here so we know that dirty data
* should be in flight. We just have to wait for it to quiesce.
*/
void scoutfs_shutdown_trans(struct super_block *sb)
{
@@ -630,19 +601,13 @@ void scoutfs_shutdown_trans(struct super_block *sb)
DECLARE_TRANS_INFO(sb, tri);
if (tri) {
if (tri->write_workq) {
/* immediately queues pending timer */
flush_delayed_work(&tri->write_work);
/* prevents re-arming if it has to wait */
cancel_delayed_work_sync(&tri->write_work);
destroy_workqueue(tri->write_workq);
/* trans work schedules after shutdown see null */
tri->write_workq = NULL;
}
scoutfs_alloc_prepare_commit(sb, &tri->alloc, &tri->wri);
scoutfs_block_writer_forget_all(sb, &tri->wri);
if (sbi->trans_write_workq) {
cancel_delayed_work_sync(&sbi->trans_write_work);
destroy_workqueue(sbi->trans_write_workq);
/* trans work schedules after shutdown see null */
sbi->trans_write_workq = NULL;
}
kfree(tri);
sbi->trans_info = NULL;
}

View File

@@ -1,16 +1,26 @@
#ifndef _SCOUTFS_TRANS_H_
#define _SCOUTFS_TRANS_H_
/* the server will attempt to fill data allocs for each trans */
#define SCOUTFS_TRANS_DATA_ALLOC_HWM (2ULL * 1024 * 1024 * 1024)
/* the client will force commits if data allocators get too low */
#define SCOUTFS_TRANS_DATA_ALLOC_LWM (256ULL * 1024 * 1024)
#include "count.h"
void scoutfs_trans_write_func(struct work_struct *work);
int scoutfs_trans_sync(struct super_block *sb, int wait);
int scoutfs_file_fsync(struct file *file, loff_t start, loff_t end,
int datasync);
void scoutfs_trans_restart_sync_deadline(struct super_block *sb);
int scoutfs_hold_trans(struct super_block *sb, bool allocing);
int scoutfs_hold_trans(struct super_block *sb,
const struct scoutfs_item_count cnt);
bool scoutfs_trans_held(void);
void scoutfs_release_trans(struct super_block *sb);
u64 scoutfs_trans_sample_seq(struct super_block *sb);
void scoutfs_trans_track_item(struct super_block *sb, signed items,
signed vals);
int scoutfs_trans_get_log_trees(struct super_block *sb);
bool scoutfs_trans_has_dirty(struct super_block *sb);

View File

@@ -38,7 +38,10 @@ struct scoutfs_triggers {
struct scoutfs_triggers *name = SCOUTFS_SB(sb)->triggers
static char *names[] = {
[SCOUTFS_TRIGGER_BLOCK_REMOVE_STALE] = "block_remove_stale",
[SCOUTFS_TRIGGER_BTREE_STALE_READ] = "btree_stale_read",
[SCOUTFS_TRIGGER_BTREE_ADVANCE_RING_HALF] = "btree_advance_ring_half",
[SCOUTFS_TRIGGER_HARD_STALE_ERROR] = "hard_stale_error",
[SCOUTFS_TRIGGER_SEG_STALE_READ] = "seg_stale_read",
[SCOUTFS_TRIGGER_STATFS_LOCK_PURGE] = "statfs_lock_purge",
};

View File

@@ -2,7 +2,10 @@
#define _SCOUTFS_TRIGGERS_H_
enum scoutfs_trigger {
SCOUTFS_TRIGGER_BLOCK_REMOVE_STALE,
SCOUTFS_TRIGGER_BTREE_STALE_READ,
SCOUTFS_TRIGGER_BTREE_ADVANCE_RING_HALF,
SCOUTFS_TRIGGER_HARD_STALE_ERROR,
SCOUTFS_TRIGGER_SEG_STALE_READ,
SCOUTFS_TRIGGER_STATFS_LOCK_PURGE,
SCOUTFS_TRIGGER_NR,
};

View File

@@ -1,188 +0,0 @@
/*
* Copyright (C) 2021 Versity Software, Inc. All rights reserved.
*
* This program is free software; you can redistribute it and/or
* modify it under the terms of the GNU General Public
* License v2 as published by the Free Software Foundation.
*
* This program is distributed in the hope that it will be useful,
* but WITHOUT ANY WARRANTY; without even the implied warranty of
* MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU
* General Public License for more details.
*/
#include <linux/kernel.h>
#include <linux/fs.h>
#include <linux/slab.h>
#include <linux/kobject.h>
#include <linux/sysfs.h>
#include "super.h"
#include "client.h"
#include "volopt.h"
/*
* Volume options are exposed through a sysfs directory. Getting and
* setting the values sends rpcs to the server who owns the options in
* the super block.
*/
struct volopt_info {
struct super_block *sb;
struct scoutfs_sysfs_attrs ssa;
};
#define DECLARE_VOLOPT_INFO(sb, name) \
struct volopt_info *name = SCOUTFS_SB(sb)->volopt_info
#define DECLARE_VOLOPT_INFO_KOBJ(kobj, name) \
DECLARE_VOLOPT_INFO(SCOUTFS_SYSFS_ATTRS_SB(kobj), name)
/*
* attribute arrays need to be dense but the options we export could
* well become sparse over time. .store and .load are generic and we
* have a lookup table to map the attributes array indexes to the number
* and name of the option.
*/
static struct volopt_nr_name {
int nr;
char *name;
} volopt_table[] = {
{ SCOUTFS_VOLOPT_DATA_ALLOC_ZONE_BLOCKS_NR, "data_alloc_zone_blocks" },
};
/* initialized by setup, pointer array is null terminated */
static struct kobj_attribute volopt_attrs[ARRAY_SIZE(volopt_table)];
static struct attribute *volopt_attr_ptrs[ARRAY_SIZE(volopt_table) + 1];
static void get_opt_data(struct kobj_attribute *attr, struct scoutfs_volume_options *volopt,
u64 *bit, __le64 **opt)
{
size_t index = attr - &volopt_attrs[0];
int nr = volopt_table[index].nr;
*bit = 1ULL << nr;
*opt = &volopt->set_bits + 1 + nr;
}
static ssize_t volopt_attr_show(struct kobject *kobj, struct kobj_attribute *attr, char *buf)
{
DECLARE_VOLOPT_INFO_KOBJ(kobj, vinf);
struct super_block *sb = vinf->sb;
struct scoutfs_volume_options volopt;
__le64 *opt;
u64 bit;
int ret;
ret = scoutfs_client_get_volopt(sb, &volopt);
if (ret < 0)
return ret;
get_opt_data(attr, &volopt, &bit, &opt);
if (le64_to_cpu(volopt.set_bits) & bit) {
return snprintf(buf, PAGE_SIZE, "%llu", le64_to_cpup(opt));
} else {
buf[0] = '\0';
return 0;
}
}
static ssize_t volopt_attr_store(struct kobject *kobj, struct kobj_attribute *attr,
const char *buf, size_t count)
{
DECLARE_VOLOPT_INFO_KOBJ(kobj, vinf);
struct super_block *sb = vinf->sb;
struct scoutfs_volume_options volopt = {0,};
u8 chars[32];
__le64 *opt;
u64 bit;
u64 val;
int ret;
if (count == 0)
return 0;
if (count > sizeof(chars) - 1)
return -ERANGE;
get_opt_data(attr, &volopt, &bit, &opt);
if (buf[0] == '\n' || buf[0] == '\r') {
volopt.set_bits = cpu_to_le64(bit);
ret = scoutfs_client_clear_volopt(sb, &volopt);
} else {
memcpy(chars, buf, count);
chars[count] = '\0';
ret = kstrtoull(chars, 0, &val);
if (ret < 0)
return ret;
volopt.set_bits = cpu_to_le64(bit);
*opt = cpu_to_le64(val);
ret = scoutfs_client_set_volopt(sb, &volopt);
}
if (ret == 0)
ret = count;
return ret;
}
/*
* The volume option sysfs files are slim shims around RPCs so this
* should be called after the client is setup and before it is torn
* down.
*/
int scoutfs_volopt_setup(struct super_block *sb)
{
struct scoutfs_sb_info *sbi = SCOUTFS_SB(sb);
struct volopt_info *vinf;
int ret;
int i;
/* persistent volume options are always a bitmap u64 then the 64 options */
BUILD_BUG_ON(sizeof(struct scoutfs_volume_options) != (1 + 64) * 8);
vinf = kzalloc(sizeof(struct volopt_info), GFP_KERNEL);
if (!vinf) {
ret = -ENOMEM;
goto out;
}
scoutfs_sysfs_init_attrs(sb, &vinf->ssa);
vinf->sb = sb;
sbi->volopt_info = vinf;
for (i = 0; i < ARRAY_SIZE(volopt_table); i++) {
volopt_attrs[i] = (struct kobj_attribute) {
.attr = { .name = volopt_table[i].name, .mode = S_IWUSR | S_IRUGO },
.show = volopt_attr_show,
.store = volopt_attr_store,
};
volopt_attr_ptrs[i] = &volopt_attrs[i].attr;
}
BUILD_BUG_ON(ARRAY_SIZE(volopt_table) != ARRAY_SIZE(volopt_attr_ptrs) - 1);
volopt_attr_ptrs[i] = NULL;
ret = scoutfs_sysfs_create_attrs(sb, &vinf->ssa, volopt_attr_ptrs, "volume_options");
if (ret < 0)
goto out;
out:
if (ret)
scoutfs_volopt_destroy(sb);
return ret;
}
void scoutfs_volopt_destroy(struct super_block *sb)
{
struct scoutfs_sb_info *sbi = SCOUTFS_SB(sb);
struct volopt_info *vinf = SCOUTFS_SB(sb)->volopt_info;
if (vinf) {
scoutfs_sysfs_destroy_attrs(sb, &vinf->ssa);
kfree(vinf);
sbi->volopt_info = NULL;
}
}

View File

@@ -1,7 +0,0 @@
#ifndef _SCOUTFS_VOLOPT_H_
#define _SCOUTFS_VOLOPT_H_
int scoutfs_volopt_setup(struct super_block *sb);
void scoutfs_volopt_destroy(struct super_block *sb);
#endif

File diff suppressed because it is too large Load Diff

View File

@@ -1,33 +1,25 @@
#ifndef _SCOUTFS_XATTR_H_
#define _SCOUTFS_XATTR_H_
struct scoutfs_xattr_prefix_tags {
unsigned long hide:1,
srch:1,
totl:1;
};
extern const struct xattr_handler *scoutfs_xattr_handlers[];
int scoutfs_xattr_get_locked(struct inode *inode, const char *name, void *buffer, size_t size,
struct scoutfs_lock *lck);
int scoutfs_xattr_set_locked(struct inode *inode, const char *name, size_t name_len,
const void *value, size_t size, int flags,
const struct scoutfs_xattr_prefix_tags *tgs,
struct scoutfs_lock *lck, struct scoutfs_lock *totl_lock,
struct list_head *ind_locks);
ssize_t scoutfs_getxattr(struct dentry *dentry, const char *name, void *buffer,
size_t size);
int scoutfs_setxattr(struct dentry *dentry, const char *name,
const void *value, size_t size, int flags);
int scoutfs_removexattr(struct dentry *dentry, const char *name);
ssize_t scoutfs_listxattr(struct dentry *dentry, char *buffer, size_t size);
ssize_t scoutfs_list_xattrs(struct inode *inode, char *buffer,
size_t size, __u32 *hash_pos, __u64 *id_pos,
bool e_range, bool show_hidden);
int scoutfs_xattr_drop(struct super_block *sb, u64 ino,
struct scoutfs_lock *lock);
struct scoutfs_xattr_prefix_tags {
unsigned long hide:1,
srch:1;
};
int scoutfs_xattr_parse_tags(const char *name, unsigned int name_len,
struct scoutfs_xattr_prefix_tags *tgs);
void scoutfs_xattr_init_totl_key(struct scoutfs_key *key, u64 *name);
int scoutfs_xattr_combine_totl(void *dst, int dst_len, void *src, int src_len);
#endif

5
tests/.gitignore vendored
View File

@@ -1,11 +1,6 @@
src/*.d
src/createmany
src/dumb_renameat2
src/dumb_setxattr
src/handle_cat
src/handle_fsetxattr
src/bulk_create_paths
src/find_xattrs
src/stage_tmpfile
src/create_xattr_loop
src/o_tmpfile_umask

View File

@@ -1,18 +1,12 @@
CFLAGS := -Wall -O2 -Werror -D_FILE_OFFSET_BITS=64 -fno-strict-aliasing -I ../kmod/src
CFLAGS := -Wall -O2 -Werror -D_FILE_OFFSET_BITS=64 -fno-strict-aliasing
SHELL := /usr/bin/bash
# each binary command is built from a single .c file
BIN := src/createmany \
src/dumb_renameat2 \
src/dumb_setxattr \
src/handle_cat \
src/handle_fsetxattr \
src/bulk_create_paths \
src/stage_tmpfile \
src/find_xattrs \
src/create_xattr_loop \
src/fragmented_data_extents \
src/o_tmpfile_umask
src/find_xattrs
DEPS := $(wildcard src/*.d)

View File

@@ -1,43 +0,0 @@
#!/usr/bin/bash
#
# This fencing script is used for testing clusters of multiple mounts on
# a single host. It finds mounts to fence by looking for their rids and
# only knows how to "fence" by using forced unmount.
#
echo "$0 running rid '$SCOUTFS_FENCED_REQ_RID' ip '$SCOUTFS_FENCED_REQ_IP' args '$@'"
log() {
echo "$@" > /dev/stderr
exit 1
}
echo_fail() {
echo "$@" > /dev/stderr
exit 1
}
rid="$SCOUTFS_FENCED_REQ_RID"
for fs in /sys/fs/scoutfs/*; do
[ ! -d "$fs" ] && continue
fs_rid="$(cat $fs/rid)" || \
echo_fail "failed to get rid in $fs"
if [ "$fs_rid" != "$rid" ]; then
continue
fi
nr="$(cat $fs/data_device_maj_min)" || \
echo_fail "failed to get data device major:minor in $fs"
mnts=$(findmnt -l -n -t scoutfs -o TARGET -S $nr) || \
echo_fail "findmnt -t scoutfs -S $nr failed"
for mnt in $mnts; do
umount -f "$mnt" || \
echo_fail "umout -f $mnt failed"
done
done
exit 0

View File

@@ -3,7 +3,7 @@
t_filter_fs()
{
sed -e 's@mnt/test\.[0-9]*@mnt/test@g' \
-e 's@Device: [a-fA-F0-9]*h/[0-9]*d@Device: 0h/0d@g'
-e 's@Device: [a-fA-F0-7]*h/[0-9]*d@Device: 0h/0d@g'
}
#
@@ -40,7 +40,7 @@ t_filter_dmesg()
# mount and unmount spew a bunch
re="$re|scoutfs.*client connected"
re="$re|scoutfs.*client disconnected"
re="$re|scoutfs.*server starting"
re="$re|scoutfs.*server setting up"
re="$re|scoutfs.*server ready"
re="$re|scoutfs.*server accepted"
re="$re|scoutfs.*server closing"
@@ -52,35 +52,12 @@ t_filter_dmesg()
# tests that drop unmount io triggers fencing
re="$re|scoutfs .* error: fencing "
re="$re|scoutfs .*: waiting for .* clients"
re="$re|scoutfs .*: all clients recovered"
re="$re|scoutfs .*: waiting for .* lock clients"
re="$re|scoutfs .*: all lock clients recovered"
re="$re|scoutfs .* error: client rid.*lock recovery timed out"
# we test bad devices and options
# some tests mount w/o options
re="$re|scoutfs .* error: Required mount option \"metadev_path\" not found"
re="$re|scoutfs .* error: meta_super META flag not set"
re="$re|scoutfs .* error: could not open metadev:.*"
re="$re|scoutfs .* error: Unknown or malformed option,.*"
# in debugging kernels we can slow things down a bit
re="$re|hrtimer: interrupt took .*"
# fencing tests force unmounts and trigger timeouts
re="$re|scoutfs .* forcing unmount"
re="$re|scoutfs .* reconnect timed out"
re="$re|scoutfs .* recovery timeout expired"
re="$re|scoutfs .* fencing previous leader"
re="$re|scoutfs .* reclaimed resources"
re="$re|scoutfs .* quorum .* error"
re="$re|scoutfs .* error reading quorum block"
re="$re|scoutfs .* error .* writing quorum block"
re="$re|scoutfs .* error .* while checking to delete inode"
re="$re|scoutfs .* error .*writing btree blocks.*"
re="$re|scoutfs .* error .*writing super block.*"
re="$re|scoutfs .* error .* freeing merged btree blocks.*.looping commit del.*upd freeing item"
re="$re|scoutfs .* error .* freeing merged btree blocks.*.final commit del.upd freeing item"
re="$re|scoutfs .* error .*reading quorum block.*to update event.*"
re="$re|scoutfs .* error.*server failed to bind to.*"
egrep -v "($re)"
}

View File

@@ -17,17 +17,6 @@ t_sync_seq_index()
t_quiet sync
}
t_mount_rid()
{
local nr="${1:-0}"
local mnt="$(eval echo \$T_M$nr)"
local rid
rid=$(scoutfs statfs -s rid -p "$mnt")
echo "$rid"
}
#
# Output the "f.$fsid.r.$rid" identifier string for the given mount
# number, 0 is used by default if none is specified.
@@ -75,20 +64,6 @@ t_fs_nrs()
seq 0 $((T_NR_MOUNTS - 1))
}
#
# outputs "1" if the fs number has "1" in its quorum/is_leader file.
# All other cases output 0, including the fs nr being a client which
# won't have a quorum/ dir.
#
t_fs_is_leader()
{
if [ "$(cat $(t_sysfs_path $i)/quorum/is_leader 2>/dev/null)" == "1" ]; then
echo "1"
else
echo "0"
fi
}
#
# Output the mount nr of the current server. This takes no steps to
# ensure that the server doesn't shut down and have some other mount
@@ -97,7 +72,7 @@ t_fs_is_leader()
t_server_nr()
{
for i in $(t_fs_nrs); do
if [ "$(t_fs_is_leader $i)" == "1" ]; then
if [ "$(cat $(t_sysfs_path $i)/quorum/is_leader)" == "1" ]; then
echo $i
return
fi
@@ -115,7 +90,7 @@ t_server_nr()
t_first_client_nr()
{
for i in $(t_fs_nrs); do
if [ "$(t_fs_is_leader $i)" == "0" ]; then
if [ "$(cat $(t_sysfs_path $i)/quorum/is_leader)" == "0" ]; then
echo $i
return
fi
@@ -124,19 +99,6 @@ t_first_client_nr()
t_fail "t_first_client_nr didn't find any clients"
}
#
# The number of quorum members needed to form a majority to start the
# server.
#
t_majority_count()
{
if [ "$T_QUORUM" -lt 3 ]; then
echo 1
else
echo $(((T_QUORUM / 2) + 1))
fi
}
t_mount()
{
local nr="$1"
@@ -154,17 +116,7 @@ t_umount()
test "$nr" -lt "$T_NR_MOUNTS" || \
t_fail "fs nr $nr invalid"
eval t_quiet umount \$T_M$nr
}
t_force_umount()
{
local nr="$1"
test "$nr" -lt "$T_NR_MOUNTS" || \
t_fail "fs nr $nr invalid"
eval t_quiet umount -f \$T_M$nr
eval t_quiet umount \$T_DB$i
}
#
@@ -244,19 +196,12 @@ t_trigger_show() {
echo "trigger $which $string: $(t_trigger_get $which $nr)"
}
t_trigger_arm_silent() {
t_trigger_arm() {
local which="$1"
local nr="$2"
local path=$(t_trigger_path "$nr")
echo 1 > "$path/$which"
}
t_trigger_arm() {
local which="$1"
local nr="$2"
t_trigger_arm_silent $which $nr
t_trigger_show $which armed $nr
}
@@ -271,162 +216,16 @@ t_counter() {
cat "$(t_sysfs_path $nr)/counters/$which"
}
#
# output the difference between the current value of a counter and the
# caller's provided previous value.
#
t_counter_diff_value() {
local which="$1"
local old="$2"
local nr="$3"
local new="$(t_counter $which $nr)"
echo "$((new - old))"
}
#
# output the value of the given counter for the given mount, defaulting
# to mount 0 if a mount isn't specified. For tests which expect a
# specific difference in counters.
# to mount 0 if a mount isn't specified.
#
t_counter_diff() {
local which="$1"
local old="$2"
local nr="$3"
local new
echo "counter $which diff $(t_counter_diff_value $which $old $nr)"
}
#
# output a message indicating whether or not the counter value changed.
# For tests that expect a difference, or not, but the amount of
# difference isn't significant.
#
t_counter_diff_changed() {
local which="$1"
local old="$2"
local nr="$3"
local diff="$(t_counter_diff_value $which $old $nr)"
test "$diff" -eq 0 && \
echo "counter $which didn't change" ||
echo "counter $which changed"
}
#
# See if we can find a local mount with the caller's rid.
#
t_rid_is_mounted() {
local rid="$1"
local fr="$1"
for fr in /sys/fs/scoutfs/*; do
if [ "$(cat $fr/rid)" == "$rid" ]; then
return 0
fi
done
return 1
}
#
# A given mount is being fenced if any mount has a fence request pending
# for it which hasn't finished and been removed.
#
t_rid_is_fencing() {
local rid="$1"
local fr
for fr in /sys/fs/scoutfs/*; do
if [ -d "$fr/fence/$rid" ]; then
return 0
fi
done
return 1
}
#
# Wait until the mount identified by the first rid arg is not in any
# states specified by the remaining state description word args.
#
t_wait_if_rid_is() {
local rid="$1"
while ( [[ $* =~ mounted ]] && t_rid_is_mounted $rid ) ||
( [[ $* =~ fencing ]] && t_rid_is_fencing $rid ) ; do
sleep .5
done
}
#
# Wait until any mount identifies itself as the elected leader. We can
# be waiting while tests mount and unmount so mounts may not be mounted
# at the test's expected mount points.
#
t_wait_for_leader() {
local i
while sleep .25; do
for i in $(t_fs_nrs); do
local ldr="$(t_sysfs_path $i 2>/dev/null)/quorum/is_leader"
if [ "$(cat $ldr 2>/dev/null)" == "1" ]; then
return
fi
done
done
}
t_get_sysfs_mount_option() {
local nr="$1"
local name="$2"
local opt="$(t_sysfs_path $nr)/mount_options/$name"
cat "$opt"
}
t_set_sysfs_mount_option() {
local nr="$1"
local name="$2"
local val="$3"
local opt="$(t_sysfs_path $nr)/mount_options/$name"
echo "$val" > "$opt"
}
t_set_all_sysfs_mount_options() {
local name="$1"
local val="$2"
local i
for i in $(t_fs_nrs); do
t_set_sysfs_mount_option $i $name $val
done
}
declare -A _saved_opts
t_save_all_sysfs_mount_options() {
local name="$1"
local ind
local opt
local i
for i in $(t_fs_nrs); do
opt="$(t_sysfs_path $i)/mount_options/$name"
ind="${name}_${i}"
_saved_opts[$ind]="$(cat $opt)"
done
}
t_restore_all_sysfs_mount_options() {
local name="$1"
local ind
local i
for i in $(t_fs_nrs); do
ind="${name}_${i}"
t_set_sysfs_mount_option $i $name "${_saved_opts[$ind]}"
done
new="$(t_counter $which $nr)"
echo "counter $which diff $((new - old))"
}

View File

@@ -23,18 +23,3 @@ t_require_mounts() {
test "$T_NR_MOUNTS" -ge "$req" || \
t_skip "$req mounts required, only have $T_NR_MOUNTS"
}
#
# Require that the meta device be at least the size string argument, as
# parsed by numfmt using single char base 2 suffixes (iec).. 64G, etc.
#
t_require_meta_size() {
local dev="$T_META_DEVICE"
local req_iec="$1"
local req_bytes=$(numfmt --from=iec --to=none $req_iec)
local dev_bytes=$(blockdev --getsize64 $dev)
local dev_iec=$(numfmt --from=auto --to=iec $dev_bytes)
test "$dev_bytes" -ge "$req_bytes" || \
t_skip "$dev must be at least $req_iec, is $dev_iec"
}

View File

@@ -1,6 +0,0 @@
== prepare devices, mount point, and logs
== bad devices, bad options
== swapped devices
== both meta devices
== both data devices
== good volume, bad option and good options

View File

@@ -53,5 +53,3 @@ mv: cannot move /mnt/test/test/basic-posix-consistency/dir/c/clobber to
== inode indexes match after syncing existing
== inode indexes match after copying and syncing
== inode indexes match after removing and syncing
== concurrent creates make one file
one-file

View File

@@ -1,6 +0,0 @@
== truncate writes zeroed partial end of file block
0000000 0a79 0a79 0a79 0a79 0a79 0a79 0a79 0a79
*
0006144 0000 0000 0000 0000 0000 0000 0000 0000
*
0012288

View File

@@ -1,2 +0,0 @@
== Issue scoutfs df to force block reads to trigger stale invalidation/retry
counter block_cache_remove_stale changed

View File

@@ -1 +0,0 @@
== 60s of unmounting non-quorum clients during recovery

View File

@@ -1,26 +0,0 @@
== initial writes smaller than prealloc grow to prealloc size
/mnt/test/test/data-prealloc/file-1: 7 extents found
/mnt/test/test/data-prealloc/file-2: 7 extents found
== larger files get full prealloc extents
/mnt/test/test/data-prealloc/file-1: 9 extents found
/mnt/test/test/data-prealloc/file-2: 9 extents found
== non-streaming writes with contig have per-block extents
/mnt/test/test/data-prealloc/file-1: 32 extents found
/mnt/test/test/data-prealloc/file-2: 32 extents found
== any writes to region prealloc get full extents
/mnt/test/test/data-prealloc/file-1: 4 extents found
/mnt/test/test/data-prealloc/file-2: 4 extents found
/mnt/test/test/data-prealloc/file-1: 4 extents found
/mnt/test/test/data-prealloc/file-2: 4 extents found
== streaming offline writes get full extents either way
/mnt/test/test/data-prealloc/file-1: 4 extents found
/mnt/test/test/data-prealloc/file-2: 4 extents found
/mnt/test/test/data-prealloc/file-1: 4 extents found
/mnt/test/test/data-prealloc/file-2: 4 extents found
== goofy preallocation amounts work
/mnt/test/test/data-prealloc/file-1: 5 extents found
/mnt/test/test/data-prealloc/file-2: 5 extents found
/mnt/test/test/data-prealloc/file-1: 5 extents found
/mnt/test/test/data-prealloc/file-2: 5 extents found
/mnt/test/test/data-prealloc/file-1: 3 extents found
/mnt/test/test/data-prealloc/file-2: 3 extents found

View File

@@ -1,8 +0,0 @@
== prepare directories and files
== fallocate until enospc
== remove all the files and verify free data blocks
== make small meta fs
== create large xattrs until we fill up metadata
== remove files with xattrs after enospc
== make sure we can create again
== cleanup small meta fs

View File

@@ -1,3 +0,0 @@
== creating reasonably large per-mount files
== 10s of racing cold reads and fallocate nop
== cleaning up files

View File

@@ -1,5 +0,0 @@
== make sure all mounts can see each other
== force unmount one client, connection timeout, fence nop, mount
== force unmount all non-server, connection timeout, fence nop, mount
== force unmount server, quorum elects new leader, fence nop, mount
== force unmount everything, new server fences all previous

View File

@@ -1,27 +0,0 @@
== basic unlink deletes
ino found in dseq index
ino not found in dseq index
== local open-unlink waits for close to delete
contents after rm: contents
ino found in dseq index
ino not found in dseq index
== multiple local opens are protected
contents after rm 1: contents
contents after rm 2: contents
ino found in dseq index
ino not found in dseq index
== remote unopened unlink deletes
ino not found in dseq index
ino not found in dseq index
== unlink wait for open on other mount
mount 0 contents after mount 1 rm: contents
ino found in dseq index
ino found in dseq index
stat: cannot stat /mnt/test/test/inode-deletion/file: No such file or directory
ino not found in dseq index
ino not found in dseq index
== lots of deletions use one open map
== open files survive remote scanning orphans
mount 0 contents after mount 1 remounted: contents
ino not found in dseq index
ino not found in dseq index

View File

@@ -1,3 +0,0 @@
== creating fragmented extents
== unlink file with moved extents to free extents per block
== cleanup

View File

@@ -0,0 +1,4 @@
== create per mount files
== time independent modification
== time concurrent independent modification
== time concurrent conflicting modification

View File

@@ -1,3 +0,0 @@
== starting background invalidating read/write load
== 60s of lock recovery during invalidating load
== stopping background load

View File

@@ -1,3 +0,0 @@
== create per mount files
== 30s of racing random mount/umount
== mounting any unmounted

View File

@@ -1,26 +0,0 @@
== non-acl O_TMPFILE creation honors umask
umask 022
fstat after open(0777): 0100755
stat after linkat: 0100755
umask 077
fstat after open(0777): 0100700
stat after linkat: 0100700
== stage from tmpfile
total file size 33669120
00000000 41 41 41 41 41 41 41 41 41 41 41 41 41 41 41 41 |AAAAAAAAAAAAAAAA|
*
00400000 42 42 42 42 42 42 42 42 42 42 42 42 42 42 42 42 |BBBBBBBBBBBBBBBB|
*
00801000 43 43 43 43 43 43 43 43 43 43 43 43 43 43 43 43 |CCCCCCCCCCCCCCCC|
*
00c03000 44 44 44 44 44 44 44 44 44 44 44 44 44 44 44 44 |DDDDDDDDDDDDDDDD|
*
01006000 45 45 45 45 45 45 45 45 45 45 45 45 45 45 45 45 |EEEEEEEEEEEEEEEE|
*
0140a000 46 46 46 46 46 46 46 46 46 46 46 46 46 46 46 46 |FFFFFFFFFFFFFFFF|
*
0180f000 47 47 47 47 47 47 47 47 47 47 47 47 47 47 47 47 |GGGGGGGGGGGGGGGG|
*
01c15000 48 48 48 48 48 48 48 48 48 48 48 48 48 48 48 48 |HHHHHHHHHHHHHHHH|
*
0201c000

View File

@@ -1,5 +0,0 @@
== test our inode existance function
== unlinked and opened inodes still exist
== orphan from failed evict deletion is picked up
== orphaned inos in all mounts all deleted
== 30s of racing evict deletion, orphan scanning, and open by handle

View File

@@ -1,2 +0,0 @@
=== renameat2 noreplace flag test
=== run two asynchronous calls to renameat2 NOREPLACE

View File

@@ -1,27 +0,0 @@
== make initial small fs
== 0s do nothing
== shrinking fails
resize_devices ioctl failed: Invalid argument (22)
scoutfs: resize-devices failed: Invalid argument (22)
resize_devices ioctl failed: Invalid argument (22)
scoutfs: resize-devices failed: Invalid argument (22)
resize_devices ioctl failed: Invalid argument (22)
scoutfs: resize-devices failed: Invalid argument (22)
== existing sizes do nothing
== growing outside device fails
resize_devices ioctl failed: Invalid argument (22)
scoutfs: resize-devices failed: Invalid argument (22)
resize_devices ioctl failed: Invalid argument (22)
scoutfs: resize-devices failed: Invalid argument (22)
resize_devices ioctl failed: Invalid argument (22)
scoutfs: resize-devices failed: Invalid argument (22)
== resizing meta works
== resizing data works
== shrinking back fails
resize_devices ioctl failed: Invalid argument (22)
scoutfs: resize-devices failed: Invalid argument (22)
resize_devices ioctl failed: Invalid argument (22)
scoutfs: resize-devices failed: Invalid argument (22)
== resizing again does nothing
== resizing to full works
== cleanup extra fs

View File

@@ -7,4 +7,3 @@ found second
== changing metadata must increase meta seq
== changing contents must increase data seq
== make sure dirtying doesn't livelock walk
== concurrent update attempts maintain single entries

View File

@@ -16,4 +16,3 @@ setfattr: /mnt/test/test/simple-xattr-unit/file: Numerical result out of range
setfattr: /mnt/test/test/simple-xattr-unit/file: Argument list too long
=== good length boundaries
=== 500 random lengths
=== alternate val size between interesting sizes

View File

@@ -2,7 +2,6 @@
== update existing xattr
== remove an xattr
== remove xattr with files
== trigger small log merges by rotating single block with unmount
== create entries in current log
== delete small fraction
== remove files

Some files were not shown because too many files have changed in this diff Show More