mirror of
https://github.com/versity/scoutfs.git
synced 2026-01-08 21:03:12 +00:00
Compare commits
7 Commits
zab/quot_p
...
zab/check
| Author | SHA1 | Date | |
|---|---|---|---|
|
|
6541ccfdd0 | ||
|
|
b56836b395 | ||
|
|
de8395a9cf | ||
|
|
94c608f281 | ||
|
|
84c1460e4f | ||
|
|
e407f67fcc | ||
|
|
13c4b35bed |
@@ -7,7 +7,7 @@ FMTIOC_H := format.h ioctl.h
|
||||
FMTIOC_KMOD := $(addprefix ../kmod/src/,$(FMTIOC_H))
|
||||
|
||||
CFLAGS := -Wall -O2 -Werror -D_FILE_OFFSET_BITS=64 -g -msse4.2 \
|
||||
-fno-strict-aliasing \
|
||||
-I src/ -fno-strict-aliasing \
|
||||
-DSCOUTFS_FORMAT_HASH=0x$(SCOUTFS_FORMAT_HASH)LLU
|
||||
|
||||
ifneq ($(wildcard $(firstword $(FMTIOC_KMOD))),)
|
||||
@@ -15,8 +15,9 @@ CFLAGS += -I../kmod/src
|
||||
endif
|
||||
|
||||
BIN := src/scoutfs
|
||||
OBJ := $(patsubst %.c,%.o,$(wildcard src/*.c))
|
||||
DEPS := $(wildcard */*.d)
|
||||
OBJ_DIRS := src src/check
|
||||
OBJ := $(foreach dir,$(OBJ_DIRS),$(patsubst %.c,%.o,$(wildcard $(dir)/*.c)))
|
||||
DEPS := $(foreach dir,$(OBJ_DIRS),$(wildcard $(dir)/*.d))
|
||||
|
||||
all: $(BIN)
|
||||
|
||||
|
||||
@@ -10,6 +10,11 @@
|
||||
* Just a quick simple native bitmap.
|
||||
*/
|
||||
|
||||
int test_bit(unsigned long *bits, u64 nr)
|
||||
{
|
||||
return !!(bits[nr / BITS_PER_LONG] & (1UL << (nr & (BITS_PER_LONG - 1))));
|
||||
}
|
||||
|
||||
void set_bit(unsigned long *bits, u64 nr)
|
||||
{
|
||||
bits[nr / BITS_PER_LONG] |= 1UL << (nr & (BITS_PER_LONG - 1));
|
||||
|
||||
@@ -1,6 +1,7 @@
|
||||
#ifndef _BITMAP_H_
|
||||
#define _BITMAP_H_
|
||||
|
||||
int test_bit(unsigned long *bits, u64 nr);
|
||||
void set_bit(unsigned long *bits, u64 nr);
|
||||
void clear_bit(unsigned long *bits, u64 nr);
|
||||
u64 find_next_set_bit(unsigned long *start, u64 from, u64 total);
|
||||
|
||||
159
utils/src/check/alloc.c
Normal file
159
utils/src/check/alloc.c
Normal file
@@ -0,0 +1,159 @@
|
||||
#include <unistd.h>
|
||||
#include <stdio.h>
|
||||
#include <stdlib.h>
|
||||
#include <stdbool.h>
|
||||
#include <sys/mman.h>
|
||||
#include <errno.h>
|
||||
|
||||
#include "sparse.h"
|
||||
#include "util.h"
|
||||
#include "format.h"
|
||||
#include "bitmap.h"
|
||||
#include "key.h"
|
||||
|
||||
#include "alloc.h"
|
||||
#include "block.h"
|
||||
#include "btree.h"
|
||||
#include "extent.h"
|
||||
#include "iter.h"
|
||||
#include "sns.h"
|
||||
|
||||
/*
|
||||
* We check the list blocks serially.
|
||||
*
|
||||
* XXX:
|
||||
* - compare ref seqs
|
||||
* - detect cycles?
|
||||
*/
|
||||
int alloc_list_meta_iter(struct scoutfs_alloc_list_head *lhead, extent_cb_t cb, void *cb_arg)
|
||||
{
|
||||
struct scoutfs_alloc_list_block *lblk;
|
||||
struct scoutfs_block_ref ref;
|
||||
struct block *blk = NULL;
|
||||
u64 blkno;
|
||||
int ret;
|
||||
|
||||
ref = lhead->ref;
|
||||
|
||||
while (ref.blkno) {
|
||||
blkno = le64_to_cpu(ref.blkno);
|
||||
|
||||
ret = cb(blkno, 1, cb_arg);
|
||||
if (ret < 0) {
|
||||
ret = xlate_iter_errno(ret);
|
||||
goto out;
|
||||
}
|
||||
|
||||
ret = block_get(&blk, blkno, 0);
|
||||
if (ret < 0)
|
||||
goto out;
|
||||
|
||||
lblk = block_buf(blk);
|
||||
/* XXX verify block */
|
||||
/* XXX sort? maybe */
|
||||
|
||||
ref = lblk->next;
|
||||
|
||||
block_put(&blk);
|
||||
}
|
||||
|
||||
ret = 0;
|
||||
out:
|
||||
return ret;
|
||||
}
|
||||
|
||||
int alloc_root_meta_iter(struct scoutfs_alloc_root *root, extent_cb_t cb, void *cb_arg)
|
||||
{
|
||||
return btree_meta_iter(&root->root, cb, cb_arg);
|
||||
}
|
||||
|
||||
int alloc_list_extent_iter(struct scoutfs_alloc_list_head *lhead, extent_cb_t cb, void *cb_arg)
|
||||
{
|
||||
struct scoutfs_alloc_list_block *lblk;
|
||||
struct scoutfs_block_ref ref;
|
||||
struct block *blk = NULL;
|
||||
u64 blkno;
|
||||
int ret;
|
||||
int i;
|
||||
|
||||
ref = lhead->ref;
|
||||
|
||||
while (ref.blkno) {
|
||||
blkno = le64_to_cpu(ref.blkno);
|
||||
|
||||
ret = block_get(&blk, blkno, 0);
|
||||
if (ret < 0)
|
||||
goto out;
|
||||
|
||||
sns_push("alloc_list_block", blkno, 0);
|
||||
|
||||
lblk = block_buf(blk);
|
||||
/* XXX verify block */
|
||||
/* XXX sort? maybe */
|
||||
|
||||
ret = 0;
|
||||
for (i = 0; i < le32_to_cpu(lblk->nr); i++) {
|
||||
blkno = le64_to_cpu(lblk->blknos[le32_to_cpu(lblk->start) + i]);
|
||||
|
||||
ret = cb(blkno, 1, cb_arg);
|
||||
if (ret < 0)
|
||||
break;
|
||||
}
|
||||
|
||||
ref = lblk->next;
|
||||
|
||||
block_put(&blk);
|
||||
sns_pop();
|
||||
if (ret < 0) {
|
||||
ret = xlate_iter_errno(ret);
|
||||
goto out;
|
||||
}
|
||||
}
|
||||
|
||||
ret = 0;
|
||||
out:
|
||||
return ret;
|
||||
}
|
||||
|
||||
static bool valid_free_extent_key(struct scoutfs_key *key)
|
||||
{
|
||||
return (key->sk_zone == SCOUTFS_FREE_EXTENT_BLKNO_ZONE ||
|
||||
key->sk_zone == SCOUTFS_FREE_EXTENT_ORDER_ZONE) &&
|
||||
(!key->_sk_fourth && !key->sk_type &&
|
||||
(key->sk_zone == SCOUTFS_FREE_EXTENT_ORDER_ZONE || !key->_sk_third));
|
||||
}
|
||||
|
||||
static int free_item_cb(struct scoutfs_key *key, void *val, u16 val_len, void *cb_arg)
|
||||
{
|
||||
struct extent_cb_arg_t *ecba = cb_arg;
|
||||
u64 start;
|
||||
u64 len;
|
||||
|
||||
/* XXX not sure these eios are what we want */
|
||||
|
||||
if (val_len != 0)
|
||||
return -EIO;
|
||||
|
||||
if (!valid_free_extent_key(key))
|
||||
return -EIO;
|
||||
|
||||
if (key->sk_zone == SCOUTFS_FREE_EXTENT_ORDER_ZONE)
|
||||
return -ECHECK_ITER_DONE;
|
||||
|
||||
start = le64_to_cpu(key->skfb_end) - le64_to_cpu(key->skfb_len) + 1;
|
||||
len = le64_to_cpu(key->skfb_len);
|
||||
|
||||
return ecba->cb(start, len, ecba->cb_arg);
|
||||
}
|
||||
|
||||
/*
|
||||
* Call the callback with each of the primary BLKNO free extents stored
|
||||
* in item in the given alloc root. It doesn't visit the secondary
|
||||
* ORDER extents.
|
||||
*/
|
||||
int alloc_root_extent_iter(struct scoutfs_alloc_root *root, extent_cb_t cb, void *cb_arg)
|
||||
{
|
||||
struct extent_cb_arg_t ecba = { .cb = cb, .cb_arg = cb_arg };
|
||||
|
||||
return btree_item_iter(&root->root, free_item_cb, &ecba);
|
||||
}
|
||||
12
utils/src/check/alloc.h
Normal file
12
utils/src/check/alloc.h
Normal file
@@ -0,0 +1,12 @@
|
||||
#ifndef _SCOUTFS_UTILS_CHECK_ALLOC_H
|
||||
#define _SCOUTFS_UTILS_CHECK_ALLOC_H
|
||||
|
||||
#include "extent.h"
|
||||
|
||||
int alloc_list_meta_iter(struct scoutfs_alloc_list_head *lhead, extent_cb_t cb, void *cb_arg);
|
||||
int alloc_root_meta_iter(struct scoutfs_alloc_root *root, extent_cb_t cb, void *cb_arg);
|
||||
|
||||
int alloc_list_extent_iter(struct scoutfs_alloc_list_head *lhead, extent_cb_t cb, void *cb_arg);
|
||||
int alloc_root_extent_iter(struct scoutfs_alloc_root *root, extent_cb_t cb, void *cb_arg);
|
||||
|
||||
#endif
|
||||
564
utils/src/check/block.c
Normal file
564
utils/src/check/block.c
Normal file
@@ -0,0 +1,564 @@
|
||||
#define _ISOC11_SOURCE /* aligned_alloc */
|
||||
#define _DEFAULT_SOURCE /* syscall() */
|
||||
#include <stdlib.h>
|
||||
#include <unistd.h>
|
||||
#include <stdbool.h>
|
||||
#include <stdio.h>
|
||||
#include <errno.h>
|
||||
#include <sys/syscall.h>
|
||||
#include <linux/aio_abi.h>
|
||||
|
||||
#include "sparse.h"
|
||||
#include "util.h"
|
||||
#include "format.h"
|
||||
#include "list.h"
|
||||
#include "cmp.h"
|
||||
#include "hash.h"
|
||||
|
||||
#include "block.h"
|
||||
#include "debug.h"
|
||||
#include "eno.h"
|
||||
|
||||
static struct block_data {
|
||||
struct list_head *hash_lists;
|
||||
size_t hash_nr;
|
||||
|
||||
struct list_head active_head;
|
||||
struct list_head inactive_head;
|
||||
struct list_head dirty_list;
|
||||
size_t nr_active;
|
||||
size_t nr_inactive;
|
||||
size_t nr_dirty;
|
||||
|
||||
int meta_fd;
|
||||
size_t max_cached;
|
||||
size_t nr_events;
|
||||
|
||||
aio_context_t ctx;
|
||||
struct iocb *iocbs;
|
||||
struct iocb **iocbps;
|
||||
struct io_event *events;
|
||||
} global_bdat;
|
||||
|
||||
struct block {
|
||||
struct list_head hash_head;
|
||||
struct list_head lru_head;
|
||||
struct list_head dirty_head;
|
||||
struct list_head submit_head;
|
||||
unsigned long refcount;
|
||||
unsigned long uptodate:1,
|
||||
active:1;
|
||||
u64 blkno;
|
||||
void *buf;
|
||||
size_t size;
|
||||
};
|
||||
|
||||
#define BLK_FMT \
|
||||
"blkno %llu rc %ld d %u a %u"
|
||||
#define BLK_ARG(blk) \
|
||||
(blk)->blkno, (blk)->refcount, !list_empty(&(blk)->dirty_head), blk->active
|
||||
#define debug_blk(blk, fmt, args...) \
|
||||
debug(fmt " " BLK_FMT, ##args, BLK_ARG(blk))
|
||||
|
||||
/*
|
||||
* This just allocates and initialzies the block. The caller is
|
||||
* responsible for putting it on the appropriate initial lists and
|
||||
* managing refcounts.
|
||||
*/
|
||||
static struct block *alloc_block(struct block_data *bdat, u64 blkno, size_t size)
|
||||
{
|
||||
struct block *blk;
|
||||
|
||||
blk = calloc(1, sizeof(struct block));
|
||||
if (blk) {
|
||||
blk->buf = aligned_alloc(4096, size); /* XXX static alignment :/ */
|
||||
if (!blk->buf) {
|
||||
free(blk);
|
||||
blk = NULL;
|
||||
} else {
|
||||
INIT_LIST_HEAD(&blk->hash_head);
|
||||
INIT_LIST_HEAD(&blk->lru_head);
|
||||
INIT_LIST_HEAD(&blk->dirty_head);
|
||||
INIT_LIST_HEAD(&blk->submit_head);
|
||||
blk->blkno = blkno;
|
||||
blk->size = size;
|
||||
}
|
||||
}
|
||||
|
||||
return blk;
|
||||
}
|
||||
|
||||
static void free_block(struct block_data *bdat, struct block *blk)
|
||||
{
|
||||
debug_blk(blk, "free");
|
||||
|
||||
if (!list_empty(&blk->lru_head)) {
|
||||
if (blk->active)
|
||||
bdat->nr_active--;
|
||||
else
|
||||
bdat->nr_inactive--;
|
||||
list_del(&blk->lru_head);
|
||||
}
|
||||
|
||||
if (!list_empty(&blk->dirty_head)) {
|
||||
bdat->nr_dirty--;
|
||||
list_del(&blk->dirty_head);
|
||||
}
|
||||
|
||||
if (!list_empty(&blk->hash_head))
|
||||
list_del(&blk->hash_head);
|
||||
|
||||
if (!list_empty(&blk->submit_head))
|
||||
list_del(&blk->submit_head);
|
||||
|
||||
free(blk->buf);
|
||||
free(blk);
|
||||
}
|
||||
|
||||
static bool blk_is_dirty(struct block *blk)
|
||||
{
|
||||
return !list_empty(&blk->dirty_head);
|
||||
}
|
||||
|
||||
/*
|
||||
* Rebalance the cache.
|
||||
*
|
||||
* First we shrink the cache to limit it to max_cached blocks.
|
||||
* Logically, we walk from oldest to newest in the inactive list and
|
||||
* then in the active list. Since these lists are physically one
|
||||
* list_head list we achieve this with a reverse walk starting from the
|
||||
* active head.
|
||||
*
|
||||
* Then we rebalnace the size of the two lists. The constraint is that
|
||||
* we don't let the active list grow larger than the inactive list. We
|
||||
* move blocks from the oldest tail of the active list to the newest
|
||||
* head of the inactive list.
|
||||
*
|
||||
* <- [active head] <-> [ .. active list .. ] <-> [inactive head] <-> [ .. inactive list .. ] ->
|
||||
*/
|
||||
static void rebalance_cache(struct block_data *bdat)
|
||||
{
|
||||
struct block *blk;
|
||||
struct block *blk_;
|
||||
|
||||
list_for_each_entry_safe_reverse(blk, blk_, &bdat->active_head, lru_head) {
|
||||
if ((bdat->nr_active + bdat->nr_inactive) < bdat->max_cached)
|
||||
break;
|
||||
|
||||
if (&blk->lru_head == &bdat->inactive_head || blk->refcount > 0 ||
|
||||
blk_is_dirty(blk))
|
||||
continue;
|
||||
|
||||
free_block(bdat, blk);
|
||||
}
|
||||
|
||||
list_for_each_entry_safe_reverse(blk, blk_, &bdat->inactive_head, lru_head) {
|
||||
if (bdat->nr_active <= bdat->nr_inactive || &blk->lru_head == &bdat->active_head)
|
||||
break;
|
||||
|
||||
list_move(&blk->lru_head, &bdat->inactive_head);
|
||||
blk->active = 0;
|
||||
bdat->nr_active--;
|
||||
bdat->nr_inactive++;
|
||||
}
|
||||
}
|
||||
|
||||
static void make_active(struct block_data *bdat, struct block *blk)
|
||||
{
|
||||
if (!blk->active) {
|
||||
if (!list_empty(&blk->lru_head)) {
|
||||
list_move(&blk->lru_head, &bdat->active_head);
|
||||
bdat->nr_inactive--;
|
||||
} else {
|
||||
list_add(&blk->lru_head, &bdat->active_head);
|
||||
}
|
||||
|
||||
blk->active = 1;
|
||||
bdat->nr_active++;
|
||||
}
|
||||
}
|
||||
|
||||
static int compar_iocbp(const void *A, const void *B)
|
||||
{
|
||||
struct iocb *a = *(struct iocb **)A;
|
||||
struct iocb *b = *(struct iocb **)B;
|
||||
|
||||
return scoutfs_cmp(a->aio_offset, b->aio_offset);
|
||||
}
|
||||
|
||||
static int submit_and_wait(struct block_data *bdat, struct list_head *list)
|
||||
{
|
||||
struct io_event *event;
|
||||
struct iocb *iocb;
|
||||
struct block *blk;
|
||||
int ret;
|
||||
int err;
|
||||
int nr;
|
||||
int i;
|
||||
|
||||
err = 0;
|
||||
nr = 0;
|
||||
list_for_each_entry(blk, list, submit_head) {
|
||||
iocb = &bdat->iocbs[nr];
|
||||
bdat->iocbps[nr] = iocb;
|
||||
|
||||
memset(iocb, 0, sizeof(struct iocb));
|
||||
|
||||
iocb->aio_data = (intptr_t)blk;
|
||||
iocb->aio_lio_opcode = blk_is_dirty(blk) ? IOCB_CMD_PWRITE : IOCB_CMD_PREAD;
|
||||
iocb->aio_fildes = bdat->meta_fd;
|
||||
iocb->aio_buf = (intptr_t)blk->buf;
|
||||
iocb->aio_nbytes = blk->size;
|
||||
iocb->aio_offset = blk->blkno * blk->size;
|
||||
|
||||
nr++;
|
||||
|
||||
debug_blk(blk, "submit");
|
||||
|
||||
if ((nr < bdat->nr_events) && blk->submit_head.next != list)
|
||||
continue;
|
||||
|
||||
qsort(bdat->iocbps, nr, sizeof(bdat->iocbps[0]), compar_iocbp);
|
||||
|
||||
ret = syscall(__NR_io_submit, bdat->ctx, nr, bdat->iocbps);
|
||||
if (ret != nr) {
|
||||
if (ret >= 0)
|
||||
errno = EIO;
|
||||
ret = -errno;
|
||||
printf("fatal system error submitting async IO: "ENO_FMT"\n",
|
||||
ENO_ARG(-ret));
|
||||
goto out;
|
||||
}
|
||||
|
||||
ret = syscall(__NR_io_getevents, bdat->ctx, nr, nr, bdat->events, NULL);
|
||||
if (ret != nr) {
|
||||
if (ret >= 0)
|
||||
errno = EIO;
|
||||
ret = -errno;
|
||||
printf("fatal system error getting IO events: "ENO_FMT"\n",
|
||||
ENO_ARG(-ret));
|
||||
goto out;
|
||||
}
|
||||
|
||||
ret = 0;
|
||||
for (i = 0; i < nr; i++) {
|
||||
event = &bdat->events[i];
|
||||
iocb = (struct iocb *)(intptr_t)event->obj;
|
||||
blk = (struct block *)(intptr_t)event->data;
|
||||
|
||||
debug_blk(blk, "complete res %lld", (long long)event->res);
|
||||
|
||||
if (event->res >= 0 && event->res != blk->size)
|
||||
event->res = -EIO;
|
||||
|
||||
/* io errors are fatal */
|
||||
if (event->res < 0) {
|
||||
ret = event->res;
|
||||
goto out;
|
||||
}
|
||||
|
||||
if (iocb->aio_lio_opcode == IOCB_CMD_PREAD) {
|
||||
blk->uptodate = 1;
|
||||
} else {
|
||||
list_del_init(&blk->dirty_head);
|
||||
bdat->nr_dirty--;
|
||||
}
|
||||
}
|
||||
nr = 0;
|
||||
}
|
||||
|
||||
ret = 0;
|
||||
out:
|
||||
return ret ?: err;
|
||||
}
|
||||
|
||||
static void inc_refcount(struct block *blk)
|
||||
{
|
||||
blk->refcount++;
|
||||
}
|
||||
|
||||
void block_put(struct block **blkp)
|
||||
{
|
||||
struct block_data *bdat = &global_bdat;
|
||||
struct block *blk = *blkp;
|
||||
|
||||
if (blk) {
|
||||
blk->refcount--;
|
||||
*blkp = NULL;
|
||||
|
||||
rebalance_cache(bdat);
|
||||
}
|
||||
}
|
||||
|
||||
static struct list_head *hash_bucket(struct block_data *bdat, u64 blkno)
|
||||
{
|
||||
u32 hash = scoutfs_hash32(&blkno, sizeof(blkno));
|
||||
|
||||
return &bdat->hash_lists[hash % bdat->hash_nr];
|
||||
}
|
||||
|
||||
static struct block *get_or_alloc(struct block_data *bdat, u64 blkno, int bf)
|
||||
{
|
||||
struct list_head *bucket = hash_bucket(bdat, blkno);
|
||||
struct block *search;
|
||||
struct block *blk;
|
||||
size_t size;
|
||||
|
||||
size = (bf & BF_SM) ? SCOUTFS_BLOCK_SM_SIZE : SCOUTFS_BLOCK_LG_SIZE;
|
||||
|
||||
blk = NULL;
|
||||
list_for_each_entry(search, bucket, hash_head) {
|
||||
if (search->blkno && blkno && search->size == size) {
|
||||
blk = search;
|
||||
break;
|
||||
}
|
||||
}
|
||||
|
||||
if (!blk) {
|
||||
blk = alloc_block(bdat, blkno, size);
|
||||
if (blk) {
|
||||
list_add(&blk->hash_head, bucket);
|
||||
list_add(&blk->lru_head, &bdat->inactive_head);
|
||||
bdat->nr_inactive++;
|
||||
}
|
||||
}
|
||||
if (blk)
|
||||
inc_refcount(blk);
|
||||
|
||||
return blk;
|
||||
}
|
||||
|
||||
/*
|
||||
* Get a block.
|
||||
*
|
||||
* The caller holds a refcount to the block while it's in use that
|
||||
* prevents it from being removed from the cache. It must be dropped
|
||||
* with block_put();
|
||||
*/
|
||||
int block_get(struct block **blk_ret, u64 blkno, int bf)
|
||||
{
|
||||
struct block_data *bdat = &global_bdat;
|
||||
struct block *blk;
|
||||
LIST_HEAD(list);
|
||||
int ret;
|
||||
|
||||
blk = get_or_alloc(bdat, blkno, bf);
|
||||
if (!blk) {
|
||||
ret = -ENOMEM;
|
||||
goto out;
|
||||
}
|
||||
|
||||
if ((bf & BF_ZERO)) {
|
||||
memset(blk->buf, 0, blk->size);
|
||||
blk->uptodate = 1;
|
||||
}
|
||||
|
||||
if (bf & BF_OVERWRITE)
|
||||
blk->uptodate = 1;
|
||||
|
||||
if (!blk->uptodate) {
|
||||
list_add(&blk->submit_head, &list);
|
||||
ret = submit_and_wait(bdat, &list);
|
||||
list_del_init(&blk->submit_head);
|
||||
if (ret < 0)
|
||||
goto out;
|
||||
}
|
||||
|
||||
if ((bf & BF_DIRTY) && !blk_is_dirty(blk)) {
|
||||
list_add_tail(&bdat->dirty_list, &blk->dirty_head);
|
||||
bdat->nr_dirty++;
|
||||
}
|
||||
|
||||
make_active(bdat, blk);
|
||||
|
||||
rebalance_cache(bdat);
|
||||
ret = 0;
|
||||
out:
|
||||
if (ret < 0)
|
||||
block_put(&blk);
|
||||
*blk_ret = blk;
|
||||
return ret;
|
||||
}
|
||||
|
||||
void *block_buf(struct block *blk)
|
||||
{
|
||||
return blk->buf;
|
||||
}
|
||||
|
||||
size_t block_size(struct block *blk)
|
||||
{
|
||||
return blk->size;
|
||||
}
|
||||
|
||||
/*
|
||||
* Drop the block from the cache, regardless of if it was free or not.
|
||||
* This is used to avoid writing blocks which were dirtied but then
|
||||
* later freed.
|
||||
*
|
||||
* The block is immediately freed and can't be referenced after this
|
||||
* returns.
|
||||
*/
|
||||
void block_drop(struct block **blkp)
|
||||
{
|
||||
struct block_data *bdat = &global_bdat;
|
||||
|
||||
free_block(bdat, *blkp);
|
||||
*blkp = NULL;
|
||||
rebalance_cache(bdat);
|
||||
}
|
||||
|
||||
/*
|
||||
* This doesn't quite work for mixing large and small blocks, but that's
|
||||
* fine, we never do that.
|
||||
*/
|
||||
static int compar_u64(const void *A, const void *B)
|
||||
{
|
||||
u64 a = *((u64 *)A);
|
||||
u64 b = *((u64 *)B);
|
||||
|
||||
return scoutfs_cmp(a, b);
|
||||
}
|
||||
|
||||
/*
|
||||
* This read-ahead is synchronous and errors are ignored. If any of the
|
||||
* blknos aren't present in the cache then we issue concurrent reads for
|
||||
* them and wait. Any existing cached blocks will be left as is.
|
||||
*
|
||||
* We might be trying to read a lot more than the number of events so we
|
||||
* sort the caller's blknos before iterating over them rather than
|
||||
* relying on submission sorting the blocks in each submitted set.
|
||||
*/
|
||||
void block_readahead(u64 *blknos, size_t nr)
|
||||
{
|
||||
struct block_data *bdat = &global_bdat;
|
||||
struct block *blk;
|
||||
struct block *blk_;
|
||||
LIST_HEAD(list);
|
||||
size_t i;
|
||||
|
||||
if (nr == 0)
|
||||
return;
|
||||
|
||||
qsort(blknos, nr, sizeof(blknos[0]), compar_u64);
|
||||
|
||||
for (i = 0; i < nr; i++) {
|
||||
blk = get_or_alloc(bdat, blknos[i], 0);
|
||||
if (blk) {
|
||||
if (!blk->uptodate)
|
||||
list_add_tail(&blk->submit_head, &list);
|
||||
else
|
||||
block_put(&blk);
|
||||
}
|
||||
}
|
||||
|
||||
(void)submit_and_wait(bdat, &list);
|
||||
|
||||
list_for_each_entry_safe(blk, blk_, &list, submit_head) {
|
||||
list_del_init(&blk->submit_head);
|
||||
block_put(&blk);
|
||||
}
|
||||
|
||||
rebalance_cache(bdat);
|
||||
}
|
||||
|
||||
/*
|
||||
* The caller's block changes form a consistent transaction. If the amount of dirty
|
||||
* blocks is large enough we issue a write.
|
||||
*/
|
||||
int block_try_commit(bool force)
|
||||
{
|
||||
struct block_data *bdat = &global_bdat;
|
||||
struct block *blk;
|
||||
struct block *blk_;
|
||||
LIST_HEAD(list);
|
||||
int ret;
|
||||
|
||||
if (!force && bdat->nr_dirty < bdat->nr_events)
|
||||
return 0;
|
||||
|
||||
list_for_each_entry(blk, &bdat->dirty_list, dirty_head) {
|
||||
list_add_tail(&blk->submit_head, &list);
|
||||
inc_refcount(blk);
|
||||
}
|
||||
|
||||
ret = submit_and_wait(bdat, &list);
|
||||
|
||||
list_for_each_entry_safe(blk, blk_, &list, submit_head) {
|
||||
list_del_init(&blk->submit_head);
|
||||
block_put(&blk);
|
||||
}
|
||||
|
||||
if (ret < 0) {
|
||||
printf("error writing dirty transaction blocks\n");
|
||||
goto out;
|
||||
}
|
||||
|
||||
ret = block_get(&blk, SCOUTFS_SUPER_BLKNO, BF_SM | BF_OVERWRITE | BF_DIRTY);
|
||||
if (ret == 0) {
|
||||
list_add(&blk->submit_head, &list);
|
||||
ret = submit_and_wait(bdat, &list);
|
||||
list_del_init(&blk->submit_head);
|
||||
block_put(&blk);
|
||||
} else {
|
||||
ret = -ENOMEM;
|
||||
}
|
||||
if (ret < 0)
|
||||
printf("error writing super block to commit transaction\n");
|
||||
|
||||
out:
|
||||
rebalance_cache(bdat);
|
||||
return ret;
|
||||
}
|
||||
|
||||
int block_setup(int meta_fd, size_t max_cached_bytes, size_t max_dirty_bytes)
|
||||
{
|
||||
struct block_data *bdat = &global_bdat;
|
||||
size_t i;
|
||||
int ret;
|
||||
|
||||
bdat->max_cached = DIV_ROUND_UP(max_cached_bytes, SCOUTFS_BLOCK_LG_SIZE);
|
||||
bdat->hash_nr = bdat->max_cached / 4;
|
||||
bdat->nr_events = DIV_ROUND_UP(max_dirty_bytes, SCOUTFS_BLOCK_LG_SIZE);
|
||||
|
||||
bdat->iocbs = calloc(bdat->nr_events, sizeof(bdat->iocbs[0]));
|
||||
bdat->iocbps = calloc(bdat->nr_events, sizeof(bdat->iocbps[0]));
|
||||
bdat->events = calloc(bdat->nr_events, sizeof(bdat->events[0]));
|
||||
bdat->hash_lists = calloc(bdat->hash_nr, sizeof(bdat->hash_lists[0]));
|
||||
if (!bdat->iocbs || !bdat->iocbps || !bdat->events || !bdat->hash_lists) {
|
||||
ret = -ENOMEM;
|
||||
goto out;
|
||||
}
|
||||
|
||||
INIT_LIST_HEAD(&bdat->active_head);
|
||||
INIT_LIST_HEAD(&bdat->inactive_head);
|
||||
INIT_LIST_HEAD(&bdat->dirty_list);
|
||||
bdat->meta_fd = meta_fd;
|
||||
list_add(&bdat->inactive_head, &bdat->active_head);
|
||||
|
||||
for (i = 0; i < bdat->hash_nr; i++)
|
||||
INIT_LIST_HEAD(&bdat->hash_lists[i]);
|
||||
|
||||
ret = syscall(__NR_io_setup, bdat->nr_events, &bdat->ctx);
|
||||
|
||||
out:
|
||||
if (ret < 0) {
|
||||
free(bdat->iocbs);
|
||||
free(bdat->iocbps);
|
||||
free(bdat->events);
|
||||
free(bdat->hash_lists);
|
||||
}
|
||||
|
||||
return ret;
|
||||
}
|
||||
|
||||
void block_shutdown(void)
|
||||
{
|
||||
struct block_data *bdat = &global_bdat;
|
||||
|
||||
syscall(SYS_io_destroy, bdat->ctx);
|
||||
|
||||
free(bdat->iocbs);
|
||||
free(bdat->iocbps);
|
||||
free(bdat->events);
|
||||
free(bdat->hash_lists);
|
||||
}
|
||||
32
utils/src/check/block.h
Normal file
32
utils/src/check/block.h
Normal file
@@ -0,0 +1,32 @@
|
||||
#ifndef _SCOUTFS_UTILS_CHECK_BLOCK_H_
|
||||
#define _SCOUTFS_UTILS_CHECK_BLOCK_H_
|
||||
|
||||
#include <unistd.h>
|
||||
#include <stdbool.h>
|
||||
|
||||
struct block;
|
||||
|
||||
#include "sparse.h"
|
||||
|
||||
/* block flags passed to block_get() */
|
||||
enum {
|
||||
BF_ZERO = (1 << 0), /* zero contents buf as block is returned */
|
||||
BF_DIRTY = (1 << 1), /* block will be written with transaction */
|
||||
BF_SM = (1 << 2), /* small 4k block instead of large 64k block */
|
||||
BF_OVERWRITE = (1 << 3), /* caller will overwrite contents, don't read */
|
||||
};
|
||||
|
||||
int block_get(struct block **blk_ret, u64 blkno, int bf);
|
||||
void block_put(struct block **blkp);
|
||||
|
||||
void *block_buf(struct block *blk);
|
||||
size_t block_size(struct block *blk);
|
||||
void block_drop(struct block **blkp);
|
||||
|
||||
void block_readahead(u64 *blknos, size_t nr);
|
||||
int block_try_commit(bool force);
|
||||
|
||||
int block_setup(int meta_fd, size_t max_cached_bytes, size_t max_dirty_bytes);
|
||||
void block_shutdown(void);
|
||||
|
||||
#endif
|
||||
209
utils/src/check/btree.c
Normal file
209
utils/src/check/btree.c
Normal file
@@ -0,0 +1,209 @@
|
||||
#include <unistd.h>
|
||||
#include <stdio.h>
|
||||
#include <stdlib.h>
|
||||
#include <stdbool.h>
|
||||
#include <errno.h>
|
||||
|
||||
#include "sparse.h"
|
||||
#include "util.h"
|
||||
#include "format.h"
|
||||
#include "key.h"
|
||||
#include "avl.h"
|
||||
|
||||
#include "block.h"
|
||||
#include "btree.h"
|
||||
#include "extent.h"
|
||||
#include "iter.h"
|
||||
#include "sns.h"
|
||||
#include "meta.h"
|
||||
#include "problem.h"
|
||||
|
||||
static inline void *item_val(struct scoutfs_btree_block *bt, struct scoutfs_btree_item *item)
|
||||
{
|
||||
return (void *)bt + le16_to_cpu(item->val_off);
|
||||
}
|
||||
|
||||
static void readahead_refs(struct scoutfs_btree_block *bt)
|
||||
{
|
||||
struct scoutfs_btree_item *item;
|
||||
struct scoutfs_avl_node *node;
|
||||
struct scoutfs_block_ref *ref;
|
||||
u64 *blknos;
|
||||
u64 blkno;
|
||||
u16 valid = 0;
|
||||
u16 nr = le16_to_cpu(bt->nr_items);
|
||||
int i;
|
||||
|
||||
blknos = calloc(nr, sizeof(blknos[0]));
|
||||
if (!blknos)
|
||||
return;
|
||||
|
||||
node = avl_first(&bt->item_root);
|
||||
|
||||
for (i = 0; i < nr; i++) {
|
||||
item = container_of(node, struct scoutfs_btree_item, node);
|
||||
ref = item_val(bt, item);
|
||||
blkno = le64_to_cpu(ref->blkno);
|
||||
|
||||
if (valid_meta_blkno(blkno))
|
||||
blknos[valid++] = blkno;
|
||||
|
||||
node = avl_next(&bt->item_root, &item->node);
|
||||
}
|
||||
|
||||
if (valid > 0)
|
||||
block_readahead(blknos, valid);
|
||||
free(blknos);
|
||||
}
|
||||
|
||||
/*
|
||||
* Call the callback on the referenced block. Then if the block
|
||||
* contains referneces read it and recurse into all its references.
|
||||
*/
|
||||
static int btree_ref_meta_iter(struct scoutfs_block_ref *ref, unsigned level, extent_cb_t cb,
|
||||
void *cb_arg)
|
||||
{
|
||||
struct scoutfs_btree_item *item;
|
||||
struct scoutfs_btree_block *bt;
|
||||
struct scoutfs_avl_node *node;
|
||||
struct block *blk = NULL;
|
||||
u64 blkno;
|
||||
int ret;
|
||||
int i;
|
||||
|
||||
blkno = le64_to_cpu(ref->blkno);
|
||||
if (!blkno)
|
||||
return 0;
|
||||
|
||||
ret = cb(blkno, 1, cb_arg);
|
||||
if (ret < 0) {
|
||||
ret = xlate_iter_errno(ret);
|
||||
return 0;
|
||||
}
|
||||
|
||||
if (level == 0)
|
||||
return 0;
|
||||
|
||||
ret = block_get(&blk, blkno, 0);
|
||||
if (ret < 0)
|
||||
return ret;
|
||||
|
||||
sns_push("btree_parent", blkno, 0);
|
||||
|
||||
bt = block_buf(blk);
|
||||
|
||||
/* XXX integrate verification with block cache */
|
||||
if (bt->level != level) {
|
||||
problem(PB_BTREE_BLOCK_BAD_LEVEL, "expected %u level %u", level, bt->level);
|
||||
ret = -EINVAL;
|
||||
goto out;
|
||||
}
|
||||
|
||||
/* read-ahead last level of parents */
|
||||
if (level == 2)
|
||||
readahead_refs(bt);
|
||||
|
||||
node = avl_first(&bt->item_root);
|
||||
|
||||
for (i = 0; i < le16_to_cpu(bt->nr_items); i++) {
|
||||
item = container_of(node, struct scoutfs_btree_item, node);
|
||||
ref = item_val(bt, item);
|
||||
|
||||
ret = btree_ref_meta_iter(ref, level - 1, cb, cb_arg);
|
||||
if (ret < 0)
|
||||
goto out;
|
||||
|
||||
node = avl_next(&bt->item_root, &item->node);
|
||||
}
|
||||
|
||||
ret = 0;
|
||||
out:
|
||||
block_put(&blk);
|
||||
sns_pop();
|
||||
|
||||
return ret;
|
||||
}
|
||||
|
||||
int btree_meta_iter(struct scoutfs_btree_root *root, extent_cb_t cb, void *cb_arg)
|
||||
{
|
||||
/* XXX check root */
|
||||
if (root->height == 0)
|
||||
return 0;
|
||||
|
||||
return btree_ref_meta_iter(&root->ref, root->height - 1, cb, cb_arg);
|
||||
}
|
||||
|
||||
static int btree_ref_item_iter(struct scoutfs_block_ref *ref, unsigned level,
|
||||
btree_item_cb_t cb, void *cb_arg)
|
||||
{
|
||||
struct scoutfs_btree_item *item;
|
||||
struct scoutfs_btree_block *bt;
|
||||
struct scoutfs_avl_node *node;
|
||||
struct block *blk = NULL;
|
||||
u64 blkno;
|
||||
int ret;
|
||||
int i;
|
||||
|
||||
blkno = le64_to_cpu(ref->blkno);
|
||||
if (!blkno)
|
||||
return 0;
|
||||
|
||||
ret = block_get(&blk, blkno, 0);
|
||||
if (ret < 0)
|
||||
return ret;
|
||||
|
||||
if (level)
|
||||
sns_push("btree_parent", blkno, 0);
|
||||
else
|
||||
sns_push("btree_leaf", blkno, 0);
|
||||
|
||||
bt = block_buf(blk);
|
||||
|
||||
/* XXX integrate verification with block cache */
|
||||
if (bt->level != level) {
|
||||
problem(PB_BTREE_BLOCK_BAD_LEVEL, "expected %u level %u", level, bt->level);
|
||||
ret = -EINVAL;
|
||||
goto out;
|
||||
}
|
||||
|
||||
/* read-ahead leaves that contain items */
|
||||
if (level == 1)
|
||||
readahead_refs(bt);
|
||||
|
||||
node = avl_first(&bt->item_root);
|
||||
|
||||
for (i = 0; i < le16_to_cpu(bt->nr_items); i++) {
|
||||
item = container_of(node, struct scoutfs_btree_item, node);
|
||||
|
||||
if (level) {
|
||||
ref = item_val(bt, item);
|
||||
ret = btree_ref_item_iter(ref, level - 1, cb, cb_arg);
|
||||
} else {
|
||||
ret = cb(&item->key, item_val(bt, item),
|
||||
le16_to_cpu(item->val_len), cb_arg);
|
||||
debug("free item key "SK_FMT" ret %d", SK_ARG(&item->key), ret);
|
||||
}
|
||||
if (ret < 0) {
|
||||
ret = xlate_iter_errno(ret);
|
||||
goto out;
|
||||
}
|
||||
|
||||
node = avl_next(&bt->item_root, &item->node);
|
||||
}
|
||||
|
||||
ret = 0;
|
||||
out:
|
||||
block_put(&blk);
|
||||
sns_pop();
|
||||
|
||||
return ret;
|
||||
}
|
||||
|
||||
int btree_item_iter(struct scoutfs_btree_root *root, btree_item_cb_t cb, void *cb_arg)
|
||||
{
|
||||
/* XXX check root */
|
||||
if (root->height == 0)
|
||||
return 0;
|
||||
|
||||
return btree_ref_item_iter(&root->ref, root->height - 1, cb, cb_arg);
|
||||
}
|
||||
14
utils/src/check/btree.h
Normal file
14
utils/src/check/btree.h
Normal file
@@ -0,0 +1,14 @@
|
||||
#ifndef _SCOUTFS_UTILS_CHECK_BTREE_H_
|
||||
#define _SCOUTFS_UTILS_CHECK_BTREE_H_
|
||||
|
||||
#include "util.h"
|
||||
#include "format.h"
|
||||
|
||||
#include "extent.h"
|
||||
|
||||
typedef int (*btree_item_cb_t)(struct scoutfs_key *key, void *val, u16 val_len, void *cb_arg);
|
||||
|
||||
int btree_meta_iter(struct scoutfs_btree_root *root, extent_cb_t cb, void *cb_arg);
|
||||
int btree_item_iter(struct scoutfs_btree_root *root, btree_item_cb_t cb, void *cb_arg);
|
||||
|
||||
#endif
|
||||
149
utils/src/check/check.c
Normal file
149
utils/src/check/check.c
Normal file
@@ -0,0 +1,149 @@
|
||||
#define _GNU_SOURCE /* O_DIRECT */
|
||||
#include <unistd.h>
|
||||
#include <stdio.h>
|
||||
#include <stdlib.h>
|
||||
#include <sys/types.h>
|
||||
#include <sys/stat.h>
|
||||
#include <sys/ioctl.h>
|
||||
#include <fcntl.h>
|
||||
#include <errno.h>
|
||||
#include <string.h>
|
||||
#include <assert.h>
|
||||
#include <stdbool.h>
|
||||
#include <argp.h>
|
||||
|
||||
#include "sparse.h"
|
||||
#include "parse.h"
|
||||
#include "util.h"
|
||||
#include "format.h"
|
||||
#include "ioctl.h"
|
||||
#include "cmd.h"
|
||||
#include "dev.h"
|
||||
|
||||
#include "alloc.h"
|
||||
#include "block.h"
|
||||
#include "debug.h"
|
||||
#include "meta.h"
|
||||
#include "super.h"
|
||||
|
||||
struct check_args {
|
||||
char *meta_device;
|
||||
char *data_device;
|
||||
char *debug_path;
|
||||
};
|
||||
|
||||
static int do_check(struct check_args *args)
|
||||
{
|
||||
int debug_fd = -1;
|
||||
int meta_fd = -1;
|
||||
int data_fd = -1;
|
||||
int ret;
|
||||
|
||||
if (args->debug_path) {
|
||||
debug_fd = open(args->debug_path, O_WRONLY | O_CREAT | O_TRUNC, 0644);
|
||||
if (debug_fd < 0) {
|
||||
ret = -errno;
|
||||
fprintf(stderr, "error opening debug output file '%s': %s (%d)\n",
|
||||
args->debug_path, strerror(errno), errno);
|
||||
goto out;
|
||||
}
|
||||
|
||||
debug_enable(debug_fd);
|
||||
}
|
||||
|
||||
meta_fd = open(args->meta_device, O_DIRECT | O_RDWR | O_EXCL);
|
||||
if (meta_fd < 0) {
|
||||
ret = -errno;
|
||||
fprintf(stderr, "failed to open meta device '%s': %s (%d)\n",
|
||||
args->meta_device, strerror(errno), errno);
|
||||
goto out;
|
||||
}
|
||||
|
||||
data_fd = open(args->data_device, O_DIRECT | O_RDWR | O_EXCL);
|
||||
if (data_fd < 0) {
|
||||
ret = -errno;
|
||||
fprintf(stderr, "failed to open data device '%s': %s (%d)\n",
|
||||
args->data_device, strerror(errno), errno);
|
||||
goto out;
|
||||
}
|
||||
|
||||
ret = block_setup(meta_fd, 128 * 1024 * 1024, 32 * 1024 * 1024);
|
||||
if (ret < 0)
|
||||
goto out;
|
||||
|
||||
ret = check_supers() ?:
|
||||
check_meta_alloc();
|
||||
out:
|
||||
/* and tear it all down */
|
||||
block_shutdown();
|
||||
super_shutdown();
|
||||
debug_disable();
|
||||
|
||||
if (meta_fd >= 0)
|
||||
close(meta_fd);
|
||||
if (data_fd >= 0)
|
||||
close(data_fd);
|
||||
if (debug_fd >= 0)
|
||||
close(debug_fd);
|
||||
|
||||
return ret;
|
||||
}
|
||||
|
||||
static int parse_opt(int key, char *arg, struct argp_state *state)
|
||||
{
|
||||
struct check_args *args = state->input;
|
||||
|
||||
switch (key) {
|
||||
case 'd':
|
||||
args->debug_path = strdup_or_error(state, arg);
|
||||
break;
|
||||
case 'e':
|
||||
case ARGP_KEY_ARG:
|
||||
if (!args->meta_device)
|
||||
args->meta_device = strdup_or_error(state, arg);
|
||||
else if (!args->data_device)
|
||||
args->data_device = strdup_or_error(state, arg);
|
||||
else
|
||||
argp_error(state, "more than two device arguments given");
|
||||
break;
|
||||
case ARGP_KEY_FINI:
|
||||
if (!args->meta_device)
|
||||
argp_error(state, "no metadata device argument given");
|
||||
if (!args->data_device)
|
||||
argp_error(state, "no data device argument given");
|
||||
break;
|
||||
default:
|
||||
break;
|
||||
}
|
||||
|
||||
return 0;
|
||||
}
|
||||
|
||||
static struct argp_option options[] = {
|
||||
{ "debug", 'd', "FILE_PATH", 0, "Path to debug output file, will be created or truncated"},
|
||||
{ NULL }
|
||||
};
|
||||
|
||||
static struct argp argp = {
|
||||
options,
|
||||
parse_opt,
|
||||
"META-DEVICE DATA-DEVICE",
|
||||
"Check filesystem consistency"
|
||||
};
|
||||
|
||||
static int check_cmd(int argc, char **argv)
|
||||
{
|
||||
struct check_args check_args = {NULL};
|
||||
int ret;
|
||||
|
||||
ret = argp_parse(&argp, argc, argv, 0, NULL, &check_args);
|
||||
if (ret)
|
||||
return ret;
|
||||
|
||||
return do_check(&check_args);
|
||||
}
|
||||
|
||||
static void __attribute__((constructor)) check_ctor(void)
|
||||
{
|
||||
cmd_register_argp("check", &argp, GROUP_CORE, check_cmd);
|
||||
}
|
||||
16
utils/src/check/debug.c
Normal file
16
utils/src/check/debug.c
Normal file
@@ -0,0 +1,16 @@
|
||||
#include <stdlib.h>
|
||||
|
||||
#include "debug.h"
|
||||
|
||||
int debug_fd = -1;
|
||||
|
||||
void debug_enable(int fd)
|
||||
{
|
||||
debug_fd = fd;
|
||||
}
|
||||
|
||||
void debug_disable(void)
|
||||
{
|
||||
if (debug_fd >= 0)
|
||||
debug_fd = -1;
|
||||
}
|
||||
17
utils/src/check/debug.h
Normal file
17
utils/src/check/debug.h
Normal file
@@ -0,0 +1,17 @@
|
||||
#ifndef _SCOUTFS_UTILS_CHECK_DEBUG_H_
|
||||
#define _SCOUTFS_UTILS_CHECK_DEBUG_H_
|
||||
|
||||
#include <stdio.h>
|
||||
|
||||
#define debug(fmt, args...) \
|
||||
do { \
|
||||
if (debug_fd >= 0) \
|
||||
dprintf(debug_fd, fmt"\n", ##args); \
|
||||
} while (0)
|
||||
|
||||
extern int debug_fd;
|
||||
|
||||
void debug_enable(int fd);
|
||||
void debug_disable(void);
|
||||
|
||||
#endif
|
||||
9
utils/src/check/eno.h
Normal file
9
utils/src/check/eno.h
Normal file
@@ -0,0 +1,9 @@
|
||||
#ifndef _SCOUTFS_UTILS_CHECK_ENO_H_
|
||||
#define _SCOUTFS_UTILS_CHECK_ENO_H_
|
||||
|
||||
#include <errno.h>
|
||||
|
||||
#define ENO_FMT "%d (%s)"
|
||||
#define ENO_ARG(eno) eno, strerror(eno)
|
||||
|
||||
#endif
|
||||
312
utils/src/check/extent.c
Normal file
312
utils/src/check/extent.c
Normal file
@@ -0,0 +1,312 @@
|
||||
#include <unistd.h>
|
||||
#include <stdio.h>
|
||||
#include <stdlib.h>
|
||||
#include <stdbool.h>
|
||||
#include <errno.h>
|
||||
|
||||
#include "util.h"
|
||||
#include "lk_rbtree_wrapper.h"
|
||||
|
||||
#include "debug.h"
|
||||
#include "extent.h"
|
||||
|
||||
/*
|
||||
* In-memory extent management in rbtree nodes.
|
||||
*/
|
||||
|
||||
bool extents_overlap(u64 a_start, u64 a_len, u64 b_start, u64 b_len)
|
||||
{
|
||||
u64 a_end = a_start + a_len;
|
||||
u64 b_end = b_start + b_len;
|
||||
|
||||
return !((a_end <= b_start) || (b_end <= a_start));
|
||||
}
|
||||
|
||||
static int ext_contains(struct extent_node *ext, u64 start, u64 len)
|
||||
{
|
||||
return ext->start <= start && ext->start + ext->len >= start + len;
|
||||
}
|
||||
|
||||
/*
|
||||
* True if the given extent is bisected by the given range; there's
|
||||
* leftover containing extents on both the left and right sides of the
|
||||
* range in the extent.
|
||||
*/
|
||||
static int ext_bisected(struct extent_node *ext, u64 start, u64 len)
|
||||
{
|
||||
return ext->start < start && ext->start + ext->len > start + len;
|
||||
}
|
||||
|
||||
static struct extent_node *ext_from_rbnode(struct rb_node *rbnode)
|
||||
{
|
||||
return rbnode ? container_of(rbnode, struct extent_node, rbnode) : NULL;
|
||||
}
|
||||
|
||||
static struct extent_node *next_ext(struct extent_node *ext)
|
||||
{
|
||||
return ext ? ext_from_rbnode(rb_next(&ext->rbnode)) : NULL;
|
||||
}
|
||||
|
||||
static struct extent_node *prev_ext(struct extent_node *ext)
|
||||
{
|
||||
return ext ? ext_from_rbnode(rb_prev(&ext->rbnode)) : NULL;
|
||||
}
|
||||
|
||||
struct walk_results {
|
||||
unsigned bisect_to_leaf:1;
|
||||
struct extent_node *found;
|
||||
struct extent_node *next;
|
||||
struct rb_node *parent;
|
||||
struct rb_node **node;
|
||||
};
|
||||
|
||||
static void walk_extents(struct extent_root *root, u64 start, u64 len, struct walk_results *wlk)
|
||||
{
|
||||
struct rb_node **node = &root->rbroot.rb_node;
|
||||
struct extent_node *ext;
|
||||
u64 end = start + len;
|
||||
int cmp;
|
||||
|
||||
wlk->found = NULL;
|
||||
wlk->next = NULL;
|
||||
wlk->parent = NULL;
|
||||
|
||||
while (*node) {
|
||||
wlk->parent = *node;
|
||||
ext = ext_from_rbnode(*node);
|
||||
cmp = end <= ext->start ? -1 :
|
||||
start >= ext->start + ext->len ? 1 : 0;
|
||||
|
||||
if (cmp < 0) {
|
||||
node = &ext->rbnode.rb_left;
|
||||
wlk->next = ext;
|
||||
} else if (cmp > 0) {
|
||||
node = &ext->rbnode.rb_right;
|
||||
} else {
|
||||
wlk->found = ext;
|
||||
if (!(wlk->bisect_to_leaf && ext_bisected(ext, start, len)))
|
||||
break;
|
||||
/* walk right so we can insert greater right from bisection */
|
||||
node = &ext->rbnode.rb_right;
|
||||
}
|
||||
}
|
||||
|
||||
wlk->node = node;
|
||||
}
|
||||
|
||||
/*
|
||||
* Return an extent that overlaps with the given range.
|
||||
*/
|
||||
int extent_lookup(struct extent_root *root, u64 start, u64 len, struct extent_node *found)
|
||||
{
|
||||
struct walk_results wlk = { 0, };
|
||||
int ret;
|
||||
|
||||
walk_extents(root, start, len, &wlk);
|
||||
if (wlk.found) {
|
||||
memset(found, 0, sizeof(struct extent_node));
|
||||
found->start = wlk.found->start;
|
||||
found->len = wlk.found->len;
|
||||
ret = 0;
|
||||
} else {
|
||||
ret = -ENOENT;
|
||||
}
|
||||
|
||||
return ret;
|
||||
}
|
||||
|
||||
/*
|
||||
* Callers can iterate through direct node references and are entirely
|
||||
* responsible for consistency when doing so.
|
||||
*/
|
||||
struct extent_node *extent_first(struct extent_root *root)
|
||||
{
|
||||
struct walk_results wlk = { 0, };
|
||||
|
||||
walk_extents(root, 0, 1, &wlk);
|
||||
|
||||
return wlk.found ?: wlk.next;
|
||||
}
|
||||
|
||||
struct extent_node *extent_next(struct extent_node *ext)
|
||||
{
|
||||
return next_ext(ext);
|
||||
}
|
||||
|
||||
struct extent_node *extent_prev(struct extent_node *ext)
|
||||
{
|
||||
return prev_ext(ext);
|
||||
}
|
||||
|
||||
/*
|
||||
* Insert a new extent into the tree. We can extend existing nodes,
|
||||
* merge with neighbours, or remove existing extents entirely if we
|
||||
* insert a range that fully spans existing nodes.
|
||||
*/
|
||||
static int walk_insert(struct extent_root *root, u64 start, u64 len, int found_err)
|
||||
{
|
||||
struct walk_results wlk = { 0, };
|
||||
struct extent_node *ext;
|
||||
struct extent_node *nei;
|
||||
int ret;
|
||||
|
||||
walk_extents(root, start, len, &wlk);
|
||||
|
||||
ext = wlk.found;
|
||||
if (ext && found_err) {
|
||||
ret = found_err;
|
||||
goto out;
|
||||
}
|
||||
|
||||
if (!ext) {
|
||||
ext = malloc(sizeof(struct extent_node));
|
||||
if (!ext) {
|
||||
ret = -ENOMEM;
|
||||
goto out;
|
||||
}
|
||||
|
||||
ext->start = start;
|
||||
ext->len = len;
|
||||
|
||||
rb_link_node(&ext->rbnode, wlk.parent, wlk.node);
|
||||
rb_insert_color(&ext->rbnode, &root->rbroot);
|
||||
}
|
||||
|
||||
/* start by expanding an existing extent if our range is larger */
|
||||
if (start < ext->start) {
|
||||
ext->len += ext->start - start;
|
||||
ext->start = start;
|
||||
}
|
||||
if (ext->start + ext->len < start + len)
|
||||
ext->len += (start + len) - (ext->start + ext->len);
|
||||
|
||||
/* drop any fully spanned neighbors, possibly merging with a final adjacent one */
|
||||
|
||||
while ((nei = prev_ext(ext))) {
|
||||
if (nei->start + nei->len < ext->start)
|
||||
break;
|
||||
|
||||
if (nei->start < ext->start) {
|
||||
ext->len += ext->start - nei->start;
|
||||
ext->start = nei->start;
|
||||
}
|
||||
|
||||
rb_erase(&nei->rbnode, &root->rbroot);
|
||||
free(nei);
|
||||
}
|
||||
|
||||
while ((nei = next_ext(ext))) {
|
||||
if (ext->start + ext->len < nei->start)
|
||||
break;
|
||||
|
||||
if (ext->start + ext->len < nei->start + nei->len)
|
||||
ext->len += (nei->start + nei->len) - (ext->start + ext->len);
|
||||
|
||||
rb_erase(&nei->rbnode, &root->rbroot);
|
||||
free(nei);
|
||||
}
|
||||
|
||||
ret = 0;
|
||||
out:
|
||||
debug("start %llu len %llu ret %d", start, len, ret);
|
||||
return ret;
|
||||
}
|
||||
|
||||
/*
|
||||
* Insert a new extent. The specified extent must not overlap with any
|
||||
* existing extents or -EEXIST is returned.
|
||||
*/
|
||||
int extent_insert_new(struct extent_root *root, u64 start, u64 len)
|
||||
{
|
||||
return walk_insert(root, start, len, true);
|
||||
}
|
||||
|
||||
/*
|
||||
* Insert an extent, extending any existing extents that may overlap.
|
||||
*/
|
||||
int extent_insert_extend(struct extent_root *root, u64 start, u64 len)
|
||||
{
|
||||
return walk_insert(root, start, len, false);
|
||||
}
|
||||
|
||||
/*
|
||||
* Remove the specified extent from an existing node. The given extent must be fully
|
||||
* contained in a single node or -ENOENT is returned.
|
||||
*/
|
||||
int extent_remove(struct extent_root *root, u64 start, u64 len)
|
||||
{
|
||||
struct extent_node *ext;
|
||||
struct extent_node *ins;
|
||||
struct walk_results wlk = {
|
||||
.bisect_to_leaf = 1,
|
||||
};
|
||||
int ret;
|
||||
|
||||
walk_extents(root, start, len, &wlk);
|
||||
|
||||
if (!(ext = wlk.found) || !ext_contains(ext, start, len)) {
|
||||
ret = -ENOENT;
|
||||
goto out;
|
||||
}
|
||||
|
||||
if (ext_bisected(ext, start, len)) {
|
||||
debug("found bisected start %llu len %llu", ext->start, ext->len);
|
||||
ins = malloc(sizeof(struct extent_node));
|
||||
if (!ins) {
|
||||
ret = -ENOMEM;
|
||||
goto out;
|
||||
}
|
||||
|
||||
ins->start = start + len;
|
||||
ins->len = (ext->start + ext->len) - ins->start;
|
||||
|
||||
rb_link_node(&ins->rbnode, wlk.parent, wlk.node);
|
||||
rb_insert_color(&ins->rbnode, &root->rbroot);
|
||||
}
|
||||
|
||||
if (start > ext->start) {
|
||||
ext->len = start - ext->start;
|
||||
} else if (len < ext->len) {
|
||||
ext->start += len;
|
||||
ext->len -= len;
|
||||
} else {
|
||||
rb_erase(&ext->rbnode, &root->rbroot);
|
||||
}
|
||||
|
||||
ret = 0;
|
||||
out:
|
||||
debug("start %llu len %llu ret %d", start, len, ret);
|
||||
|
||||
return ret;
|
||||
}
|
||||
|
||||
void extent_root_init(struct extent_root *root)
|
||||
{
|
||||
root->rbroot = RB_ROOT;
|
||||
root->total = 0;
|
||||
}
|
||||
|
||||
void extent_root_free(struct extent_root *root)
|
||||
{
|
||||
struct extent_node *ext;
|
||||
struct rb_node *node;
|
||||
struct rb_node *tmp;
|
||||
|
||||
for (node = rb_first(&root->rbroot); node && ((tmp = rb_next(node)), 1); node = tmp) {
|
||||
ext = rb_entry(node, struct extent_node, rbnode);
|
||||
rb_erase(&ext->rbnode, &root->rbroot);
|
||||
free(ext);
|
||||
}
|
||||
}
|
||||
|
||||
void extent_root_print(struct extent_root *root)
|
||||
{
|
||||
struct extent_node *ext;
|
||||
struct rb_node *node;
|
||||
struct rb_node *tmp;
|
||||
|
||||
for (node = rb_first(&root->rbroot); node && ((tmp = rb_next(node)), 1); node = tmp) {
|
||||
ext = rb_entry(node, struct extent_node, rbnode);
|
||||
debug(" start %llu len %llu", ext->start, ext->len);
|
||||
}
|
||||
}
|
||||
38
utils/src/check/extent.h
Normal file
38
utils/src/check/extent.h
Normal file
@@ -0,0 +1,38 @@
|
||||
#ifndef _SCOUTFS_UTILS_CHECK_EXTENT_H_
|
||||
#define _SCOUTFS_UTILS_CHECK_EXTENT_H_
|
||||
|
||||
#include "lk_rbtree_wrapper.h"
|
||||
|
||||
struct extent_root {
|
||||
struct rb_root rbroot;
|
||||
u64 total;
|
||||
};
|
||||
|
||||
struct extent_node {
|
||||
struct rb_node rbnode;
|
||||
u64 start;
|
||||
u64 len;
|
||||
};
|
||||
|
||||
typedef int (*extent_cb_t)(u64 start, u64 len, void *arg);
|
||||
|
||||
struct extent_cb_arg_t {
|
||||
extent_cb_t cb;
|
||||
void *cb_arg;
|
||||
};
|
||||
|
||||
bool extents_overlap(u64 a_start, u64 a_len, u64 b_start, u64 b_len);
|
||||
|
||||
int extent_lookup(struct extent_root *root, u64 start, u64 len, struct extent_node *found);
|
||||
struct extent_node *extent_first(struct extent_root *root);
|
||||
struct extent_node *extent_next(struct extent_node *ext);
|
||||
struct extent_node *extent_prev(struct extent_node *ext);
|
||||
int extent_insert_new(struct extent_root *root, u64 start, u64 len);
|
||||
int extent_insert_extend(struct extent_root *root, u64 start, u64 len);
|
||||
int extent_remove(struct extent_root *root, u64 start, u64 len);
|
||||
|
||||
void extent_root_init(struct extent_root *root);
|
||||
void extent_root_free(struct extent_root *root);
|
||||
void extent_root_print(struct extent_root *root);
|
||||
|
||||
#endif
|
||||
540
utils/src/check/image.c
Normal file
540
utils/src/check/image.c
Normal file
@@ -0,0 +1,540 @@
|
||||
#define _GNU_SOURCE /* O_DIRECT */
|
||||
#include <unistd.h>
|
||||
#include <stdio.h>
|
||||
#include <stdlib.h>
|
||||
#include <fcntl.h>
|
||||
#include <errno.h>
|
||||
#include <string.h>
|
||||
#include <stdbool.h>
|
||||
#include <argp.h>
|
||||
|
||||
#include "sparse.h"
|
||||
#include "bitmap.h"
|
||||
#include "parse.h"
|
||||
#include "util.h"
|
||||
#include "format.h"
|
||||
#include "crc.h"
|
||||
#include "cmd.h"
|
||||
#include "dev.h"
|
||||
|
||||
#include "alloc.h"
|
||||
#include "block.h"
|
||||
#include "btree.h"
|
||||
#include "log_trees.h"
|
||||
#include "super.h"
|
||||
|
||||
/* huh. */
|
||||
#define OFF_MAX (off_t)((u64)((off_t)~0ULL) >> 1)
|
||||
|
||||
#define SCOUTFS_META_IMAGE_HEADER_MAGIC 0x8aee00d098fa60c5ULL
|
||||
#define SCOUTFS_META_IMAGE_BLOCK_HEADER_MAGIC 0x70bd5e9269effd86ULL
|
||||
|
||||
struct scoutfs_meta_image_header {
|
||||
__le64 magic;
|
||||
__le64 total_bytes;
|
||||
__le32 version;
|
||||
} __packed;
|
||||
|
||||
struct scoutfs_meta_image_block_header {
|
||||
__le64 magic;
|
||||
__le64 offset;
|
||||
__le32 size;
|
||||
__le32 crc;
|
||||
} __packed;
|
||||
|
||||
struct image_args {
|
||||
char *meta_device;
|
||||
bool is_read;
|
||||
bool show_header;
|
||||
u64 ra_window;
|
||||
};
|
||||
|
||||
struct block_bitmaps {
|
||||
unsigned long *bits;
|
||||
u64 size;
|
||||
u64 count;
|
||||
};
|
||||
|
||||
#define errf(fmt, args...) \
|
||||
dprintf(STDERR_FILENO, fmt, ##args)
|
||||
|
||||
static int set_meta_bit(u64 start, u64 len, void *arg)
|
||||
{
|
||||
struct block_bitmaps *bm = arg;
|
||||
int ret;
|
||||
|
||||
if (len != 1) {
|
||||
ret = -EINVAL;
|
||||
} else {
|
||||
if (!test_bit(bm->bits, start)) {
|
||||
set_bit(bm->bits, start);
|
||||
bm->count++;
|
||||
}
|
||||
ret = 0;
|
||||
}
|
||||
|
||||
return ret;
|
||||
}
|
||||
|
||||
static int get_ref_bits(struct block_bitmaps *bm)
|
||||
{
|
||||
struct scoutfs_super_block *super = global_super;
|
||||
int ret;
|
||||
u64 i;
|
||||
|
||||
/*
|
||||
* There are almost no small blocks we need to read, so we read
|
||||
* them as the large blocks that contain them to simplify the
|
||||
* block reading process.
|
||||
*/
|
||||
set_meta_bit(SCOUTFS_SUPER_BLKNO >> SCOUTFS_BLOCK_SM_LG_SHIFT, 1, bm);
|
||||
|
||||
for (i = 0; i < SCOUTFS_QUORUM_BLOCKS; i++)
|
||||
set_meta_bit((SCOUTFS_QUORUM_BLKNO + i) >> SCOUTFS_BLOCK_SM_LG_SHIFT, 1, bm);
|
||||
|
||||
ret = alloc_root_meta_iter(&super->meta_alloc[0], set_meta_bit, bm) ?:
|
||||
alloc_root_meta_iter(&super->meta_alloc[1], set_meta_bit, bm) ?:
|
||||
alloc_root_meta_iter(&super->data_alloc, set_meta_bit, bm) ?:
|
||||
alloc_list_meta_iter(&super->server_meta_avail[0], set_meta_bit, bm) ?:
|
||||
alloc_list_meta_iter(&super->server_meta_avail[1], set_meta_bit, bm) ?:
|
||||
alloc_list_meta_iter(&super->server_meta_freed[0], set_meta_bit, bm) ?:
|
||||
alloc_list_meta_iter(&super->server_meta_freed[1], set_meta_bit, bm) ?:
|
||||
btree_meta_iter(&super->fs_root, set_meta_bit, bm) ?:
|
||||
btree_meta_iter(&super->logs_root, set_meta_bit, bm) ?:
|
||||
btree_meta_iter(&super->log_merge, set_meta_bit, bm) ?:
|
||||
btree_meta_iter(&super->mounted_clients, set_meta_bit, bm) ?:
|
||||
btree_meta_iter(&super->srch_root, set_meta_bit, bm) ?:
|
||||
log_trees_meta_iter(set_meta_bit, bm);
|
||||
|
||||
return ret;
|
||||
}
|
||||
|
||||
/*
|
||||
* Note that this temporarily modifies the header that it's given.
|
||||
*/
|
||||
static __le32 calc_crc(struct scoutfs_meta_image_block_header *bh, void *buf, size_t size)
|
||||
{
|
||||
__le32 saved = bh->crc;
|
||||
u32 crc = ~0;
|
||||
|
||||
bh->crc = 0;
|
||||
crc = crc32c(crc, bh, sizeof(*bh));
|
||||
crc = crc32c(crc, buf, size);
|
||||
bh->crc = saved;
|
||||
|
||||
return cpu_to_le32(crc);
|
||||
}
|
||||
|
||||
static void printf_header(struct scoutfs_meta_image_header *hdr)
|
||||
{
|
||||
errf("magic: 0x%016llx\n"
|
||||
"total_bytes: %llu\n"
|
||||
"version: %u\n",
|
||||
le64_to_cpu(hdr->magic),
|
||||
le64_to_cpu(hdr->total_bytes),
|
||||
le32_to_cpu(hdr->version));
|
||||
}
|
||||
|
||||
typedef ssize_t (*rw_func_t)(int fd, void *buf, size_t count, off_t offset);
|
||||
|
||||
static inline ssize_t rw_read(int fd, void *buf, size_t count, off_t offset)
|
||||
{
|
||||
return read(fd, buf, count);
|
||||
}
|
||||
|
||||
static inline ssize_t rw_pread(int fd, void *buf, size_t count, off_t offset)
|
||||
{
|
||||
return pread(fd, buf, count, offset);
|
||||
}
|
||||
|
||||
static inline ssize_t rw_write(int fd, void *buf, size_t count, off_t offset)
|
||||
{
|
||||
return write(fd, buf, count);
|
||||
}
|
||||
|
||||
static inline ssize_t rw_pwrite(int fd, void *buf, size_t count, off_t offset)
|
||||
{
|
||||
return pwrite(fd, buf, count, offset);
|
||||
}
|
||||
|
||||
static int rw_full_count(rw_func_t func, u64 *tot, int fd, void *buf, size_t count, off_t offset)
|
||||
{
|
||||
ssize_t sret;
|
||||
|
||||
while (count > 0) {
|
||||
sret = func(fd, buf, count, offset);
|
||||
if (sret <= 0 || sret > count) {
|
||||
if (sret < 0)
|
||||
return -errno;
|
||||
else
|
||||
return -EIO;
|
||||
}
|
||||
|
||||
if (tot)
|
||||
*tot += sret;
|
||||
buf += sret;
|
||||
count -= sret;
|
||||
}
|
||||
|
||||
return 0;
|
||||
}
|
||||
|
||||
static int read_image(struct image_args *args, int fd, struct block_bitmaps *bm)
|
||||
{
|
||||
struct scoutfs_meta_image_block_header bh;
|
||||
struct scoutfs_meta_image_header hdr;
|
||||
u64 opening;
|
||||
void *buf;
|
||||
off_t off;
|
||||
u64 bit;
|
||||
u64 ra;
|
||||
int ret;
|
||||
|
||||
buf = malloc(SCOUTFS_BLOCK_LG_SIZE);
|
||||
if (!buf) {
|
||||
ret = -ENOMEM;
|
||||
goto out;
|
||||
}
|
||||
|
||||
hdr.magic = cpu_to_le64(SCOUTFS_META_IMAGE_HEADER_MAGIC);
|
||||
hdr.total_bytes = cpu_to_le64(sizeof(hdr) +
|
||||
(bm->count * (SCOUTFS_BLOCK_LG_SIZE + sizeof(bh))));
|
||||
hdr.version = cpu_to_le32(1);
|
||||
|
||||
if (args->show_header) {
|
||||
printf_header(&hdr);
|
||||
ret = 0;
|
||||
goto out;
|
||||
}
|
||||
|
||||
ret = rw_full_count(rw_write, NULL, STDOUT_FILENO, &hdr, sizeof(hdr), 0);
|
||||
if (ret < 0)
|
||||
goto out;
|
||||
|
||||
opening = args->ra_window;
|
||||
ra = 0;
|
||||
bit = 0;
|
||||
|
||||
for (bit = 0; (bit = find_next_set_bit(bm->bits, bit, bm->size)) < bm->size; bit++) {
|
||||
|
||||
/* readahead to open the full window, then a block at a time */
|
||||
do {
|
||||
ra = find_next_set_bit(bm->bits, ra, bm->size);
|
||||
if (ra < bm->size) {
|
||||
off = ra << SCOUTFS_BLOCK_LG_SHIFT;
|
||||
posix_fadvise(fd, off, SCOUTFS_BLOCK_LG_SIZE, POSIX_FADV_WILLNEED);
|
||||
ra++;
|
||||
if (opening)
|
||||
opening -= min(opening, SCOUTFS_BLOCK_LG_SIZE);
|
||||
}
|
||||
} while (opening > 0);
|
||||
|
||||
off = bit << SCOUTFS_BLOCK_LG_SHIFT;
|
||||
ret = rw_full_count(rw_pread, NULL, fd, buf, SCOUTFS_BLOCK_LG_SIZE, off);
|
||||
if (ret < 0)
|
||||
goto out;
|
||||
|
||||
/*
|
||||
* Might as well try to drop the pages we've used to
|
||||
* reduce memory pressure on our read-ahead pages that
|
||||
* are waiting.
|
||||
*/
|
||||
posix_fadvise(fd, off, SCOUTFS_BLOCK_LG_SIZE, POSIX_FADV_DONTNEED);
|
||||
|
||||
bh.magic = SCOUTFS_META_IMAGE_BLOCK_HEADER_MAGIC;
|
||||
bh.offset = cpu_to_le64(off);
|
||||
bh.size = cpu_to_le32(SCOUTFS_BLOCK_LG_SIZE);
|
||||
bh.crc = calc_crc(&bh, buf, SCOUTFS_BLOCK_LG_SIZE);
|
||||
|
||||
ret = rw_full_count(rw_write, NULL, STDOUT_FILENO, &bh, sizeof(bh), 0) ?:
|
||||
rw_full_count(rw_write, NULL, STDOUT_FILENO, buf, SCOUTFS_BLOCK_LG_SIZE, 0);
|
||||
if (ret < 0)
|
||||
goto out;
|
||||
}
|
||||
|
||||
out:
|
||||
free(buf);
|
||||
|
||||
return ret;
|
||||
}
|
||||
|
||||
static int invalid_header(struct scoutfs_meta_image_header *hdr)
|
||||
{
|
||||
if (le64_to_cpu(hdr->magic) != SCOUTFS_META_IMAGE_HEADER_MAGIC) {
|
||||
errf("bad image header magic 0x%016llx (!= expected %016llx)\n",
|
||||
le64_to_cpu(hdr->magic), SCOUTFS_META_IMAGE_HEADER_MAGIC);
|
||||
|
||||
} else if (le32_to_cpu(hdr->version) != 1) {
|
||||
errf("unknown image header version %u\n", le32_to_cpu(hdr->version));
|
||||
|
||||
} else {
|
||||
return 0;
|
||||
}
|
||||
|
||||
return -EIO;
|
||||
}
|
||||
|
||||
/*
|
||||
* Doesn't catch offset+size overflowing, presumes pwrite() will return
|
||||
* an error.
|
||||
*/
|
||||
static int invalid_block_header(struct scoutfs_meta_image_block_header *bh)
|
||||
{
|
||||
if (le64_to_cpu(bh->magic) != SCOUTFS_META_IMAGE_BLOCK_HEADER_MAGIC) {
|
||||
errf("bad block header magic 0x%016llx (!= expected %016llx)\n",
|
||||
le64_to_cpu(bh->magic), SCOUTFS_META_IMAGE_BLOCK_HEADER_MAGIC);
|
||||
|
||||
} else if (le32_to_cpu(bh->size) == 0) {
|
||||
errf("invalid block header size %u\n", le32_to_cpu(bh->size));
|
||||
|
||||
} else if (le32_to_cpu(bh->size) > SIZE_MAX) {
|
||||
errf("block header size %u too large for size_t (> %zu)\n",
|
||||
le32_to_cpu(bh->size), (size_t)SIZE_MAX);
|
||||
|
||||
} else if (le64_to_cpu(bh->offset) > OFF_MAX) {
|
||||
errf("block header offset %llu too large for off_t (> %llu)\n",
|
||||
le64_to_cpu(bh->offset), (u64)OFF_MAX);
|
||||
|
||||
} else {
|
||||
return 0;
|
||||
}
|
||||
|
||||
return -EIO;
|
||||
}
|
||||
|
||||
static int write_image(struct image_args *args, int fd, struct block_bitmaps *bm)
|
||||
{
|
||||
struct scoutfs_meta_image_block_header bh;
|
||||
struct scoutfs_meta_image_header hdr;
|
||||
size_t writeback_batch = (2 * 1024 * 1024);
|
||||
size_t buf_size;
|
||||
size_t dirty;
|
||||
size_t size;
|
||||
off_t first;
|
||||
off_t last;
|
||||
off_t off;
|
||||
__le32 calc;
|
||||
void *buf;
|
||||
u64 tot;
|
||||
int ret;
|
||||
|
||||
tot = 0;
|
||||
|
||||
ret = rw_full_count(rw_read, &tot, STDIN_FILENO, &hdr, sizeof(hdr), 0);
|
||||
if (ret < 0)
|
||||
goto out;
|
||||
|
||||
if (args->show_header) {
|
||||
printf_header(&hdr);
|
||||
ret = 0;
|
||||
goto out;
|
||||
}
|
||||
|
||||
ret = invalid_header(&hdr);
|
||||
if (ret < 0)
|
||||
goto out;
|
||||
|
||||
dirty = 0;
|
||||
first = OFF_MAX;
|
||||
last = 0;
|
||||
buf = NULL;
|
||||
buf_size = 0;
|
||||
|
||||
while (tot < le64_to_cpu(hdr.total_bytes)) {
|
||||
|
||||
ret = rw_full_count(rw_read, &tot, STDIN_FILENO, &bh, sizeof(bh), 0);
|
||||
if (ret < 0)
|
||||
goto out;
|
||||
|
||||
ret = invalid_block_header(&bh);
|
||||
if (ret < 0)
|
||||
goto out;
|
||||
|
||||
size = le32_to_cpu(bh.size);
|
||||
if (buf_size < size) {
|
||||
buf = realloc(buf, size);
|
||||
if (!buf) {
|
||||
ret = -ENOMEM;
|
||||
goto out;
|
||||
}
|
||||
|
||||
buf_size = size;
|
||||
}
|
||||
|
||||
ret = rw_full_count(rw_read, &tot, STDIN_FILENO, buf, size, 0);
|
||||
if (ret < 0)
|
||||
goto out;
|
||||
|
||||
calc = calc_crc(&bh, buf, size);
|
||||
if (calc != bh.crc) {
|
||||
errf("crc err");
|
||||
ret = -EIO;
|
||||
goto out;
|
||||
}
|
||||
|
||||
off = le64_to_cpu(bh.offset);
|
||||
|
||||
ret = rw_full_count(rw_pwrite, NULL, fd, buf, size, off);
|
||||
if (ret < 0)
|
||||
goto out;
|
||||
|
||||
dirty += size;
|
||||
first = min(first, off);
|
||||
last = max(last, off);
|
||||
if (dirty >= writeback_batch) {
|
||||
posix_fadvise(fd, first, last, POSIX_FADV_DONTNEED);
|
||||
dirty = 0;
|
||||
first = OFF_MAX;
|
||||
last = 0;
|
||||
}
|
||||
}
|
||||
|
||||
ret = fsync(fd);
|
||||
if (ret < 0) {
|
||||
ret = -errno;
|
||||
goto out;
|
||||
}
|
||||
|
||||
out:
|
||||
return ret;
|
||||
}
|
||||
|
||||
static int do_image(struct image_args *args)
|
||||
{
|
||||
struct block_bitmaps bm = { .bits = NULL };
|
||||
int meta_fd = -1;
|
||||
u64 dev_size;
|
||||
mode_t mode;
|
||||
int ret;
|
||||
|
||||
mode = args->is_read ? O_RDONLY : O_RDWR;
|
||||
|
||||
meta_fd = open(args->meta_device, mode);
|
||||
if (meta_fd < 0) {
|
||||
ret = -errno;
|
||||
errf("failed to open meta device '%s': %s (%d)\n",
|
||||
args->meta_device, strerror(errno), errno);
|
||||
goto out;
|
||||
}
|
||||
|
||||
if (args->is_read) {
|
||||
ret = flush_device(meta_fd);
|
||||
if (ret < 0)
|
||||
goto out;
|
||||
|
||||
ret = get_device_size(args->meta_device, meta_fd, &dev_size);
|
||||
if (ret < 0)
|
||||
goto out;
|
||||
|
||||
bm.size = DIV_ROUND_UP(dev_size, SCOUTFS_BLOCK_LG_SIZE);
|
||||
bm.bits = calloc(1, round_up(bm.size, BITS_PER_LONG) / 8);
|
||||
if (!bm.bits) {
|
||||
ret = -ENOMEM;
|
||||
goto out;
|
||||
}
|
||||
|
||||
ret = block_setup(meta_fd, 128 * 1024 * 1024, 32 * 1024 * 1024) ?:
|
||||
check_supers() ?:
|
||||
get_ref_bits(&bm) ?:
|
||||
read_image(args, meta_fd, &bm);
|
||||
block_shutdown();
|
||||
} else {
|
||||
ret = write_image(args, meta_fd, &bm);
|
||||
}
|
||||
out:
|
||||
free(bm.bits);
|
||||
|
||||
if (meta_fd >= 0)
|
||||
close(meta_fd);
|
||||
|
||||
return ret;
|
||||
}
|
||||
|
||||
static int parse_opt(int key, char *arg, struct argp_state *state)
|
||||
{
|
||||
struct image_args *args = state->input;
|
||||
int ret;
|
||||
|
||||
switch (key) {
|
||||
case 'h':
|
||||
args->show_header = true;
|
||||
break;
|
||||
case 'r':
|
||||
ret = parse_u64(arg, &args->ra_window);
|
||||
if (ret)
|
||||
argp_error(state, "readahead winddoe parse error");
|
||||
break;
|
||||
case ARGP_KEY_ARG:
|
||||
if (!args->meta_device)
|
||||
args->meta_device = strdup_or_error(state, arg);
|
||||
else
|
||||
argp_error(state, "more than two device arguments given");
|
||||
break;
|
||||
case ARGP_KEY_FINI:
|
||||
if (!args->meta_device)
|
||||
argp_error(state, "no metadata device argument given");
|
||||
break;
|
||||
default:
|
||||
break;
|
||||
}
|
||||
|
||||
return 0;
|
||||
}
|
||||
|
||||
static struct argp_option options[] = {
|
||||
{ "show-header", 'h', NULL, 0, "Print image header and exit without processing stream" },
|
||||
{ "readahead", 'r', "NR", 0, "Maintain read-ahead window of NR blocks" },
|
||||
{ NULL }
|
||||
};
|
||||
|
||||
static struct argp read_image_argp = {
|
||||
options,
|
||||
parse_opt,
|
||||
"META-DEVICE",
|
||||
"Read metadata image stream from metadata device file"
|
||||
};
|
||||
|
||||
#define DEFAULT_RA_WINDOW (512 * 1024)
|
||||
|
||||
static int read_image_cmd(int argc, char **argv)
|
||||
{
|
||||
struct image_args image_args = {
|
||||
.is_read = true,
|
||||
.ra_window = DEFAULT_RA_WINDOW,
|
||||
};
|
||||
int ret;
|
||||
|
||||
ret = argp_parse(&read_image_argp, argc, argv, 0, NULL, &image_args);
|
||||
if (ret)
|
||||
return ret;
|
||||
|
||||
return do_image(&image_args);
|
||||
}
|
||||
|
||||
static struct argp write_image_argp = {
|
||||
options,
|
||||
parse_opt,
|
||||
"META-DEVICE",
|
||||
"Write metadata image stream to metadata device file"
|
||||
};
|
||||
|
||||
static int write_image_cmd(int argc, char **argv)
|
||||
{
|
||||
struct image_args image_args = {
|
||||
.is_read = false,
|
||||
.ra_window = DEFAULT_RA_WINDOW,
|
||||
};
|
||||
int ret;
|
||||
|
||||
ret = argp_parse(&write_image_argp, argc, argv, 0, NULL, &image_args);
|
||||
if (ret)
|
||||
return ret;
|
||||
|
||||
return do_image(&image_args);
|
||||
}
|
||||
|
||||
static void __attribute__((constructor)) image_ctor(void)
|
||||
{
|
||||
cmd_register_argp("read-metadata-image", &read_image_argp, GROUP_CORE, read_image_cmd);
|
||||
cmd_register_argp("write-metadata-image", &write_image_argp, GROUP_CORE, write_image_cmd);
|
||||
}
|
||||
15
utils/src/check/iter.h
Normal file
15
utils/src/check/iter.h
Normal file
@@ -0,0 +1,15 @@
|
||||
#ifndef _SCOUTFS_UTILS_CHECK_ITER_H_
|
||||
#define _SCOUTFS_UTILS_CHECK_ITER_H_
|
||||
|
||||
/*
|
||||
* Callbacks can return a weird -errno that we'll never use to indicate
|
||||
* that iteration can stop and return 0 for success.
|
||||
*/
|
||||
#define ECHECK_ITER_DONE EL2HLT
|
||||
|
||||
static inline int xlate_iter_errno(int ret)
|
||||
{
|
||||
return ret == -ECHECK_ITER_DONE ? 0 : ret;
|
||||
}
|
||||
|
||||
#endif
|
||||
98
utils/src/check/log_trees.c
Normal file
98
utils/src/check/log_trees.c
Normal file
@@ -0,0 +1,98 @@
|
||||
#include <unistd.h>
|
||||
#include <stdio.h>
|
||||
#include <stdlib.h>
|
||||
#include <errno.h>
|
||||
|
||||
#include "sparse.h"
|
||||
#include "util.h"
|
||||
#include "format.h"
|
||||
#include "key.h"
|
||||
|
||||
#include "alloc.h"
|
||||
#include "btree.h"
|
||||
#include "debug.h"
|
||||
#include "extent.h"
|
||||
#include "iter.h"
|
||||
#include "sns.h"
|
||||
#include "log_trees.h"
|
||||
#include "super.h"
|
||||
|
||||
struct iter_args {
|
||||
extent_cb_t cb;
|
||||
void *cb_arg;
|
||||
};
|
||||
|
||||
static int lt_meta_iter(struct scoutfs_key *key, void *val, u16 val_len, void *cb_arg)
|
||||
{
|
||||
struct iter_args *ia = cb_arg;
|
||||
struct scoutfs_log_trees *lt;
|
||||
int ret;
|
||||
|
||||
if (val_len != sizeof(struct scoutfs_log_trees))
|
||||
; /* XXX */
|
||||
|
||||
lt = val;
|
||||
|
||||
sns_push("log_trees", le64_to_cpu(lt->rid), le64_to_cpu(lt->nr));
|
||||
|
||||
debug("lt rid 0x%16llx nr %llu", le64_to_cpu(lt->rid), le64_to_cpu(lt->nr));
|
||||
|
||||
sns_push("meta_avail", 0, 0);
|
||||
ret = alloc_list_meta_iter(<->meta_avail, ia->cb, ia->cb_arg);
|
||||
sns_pop();
|
||||
if (ret < 0)
|
||||
goto out;
|
||||
|
||||
sns_push("meta_freed", 0, 0);
|
||||
ret = alloc_list_meta_iter(<->meta_freed, ia->cb, ia->cb_arg);
|
||||
sns_pop();
|
||||
if (ret < 0)
|
||||
goto out;
|
||||
|
||||
sns_push("item_root", 0, 0);
|
||||
ret = btree_meta_iter(<->item_root, ia->cb, ia->cb_arg);
|
||||
sns_pop();
|
||||
if (ret < 0)
|
||||
goto out;
|
||||
|
||||
if (lt->bloom_ref.blkno) {
|
||||
sns_push("bloom_ref", 0, 0);
|
||||
ret = ia->cb(le64_to_cpu(lt->bloom_ref.blkno), 1, ia->cb_arg);
|
||||
sns_pop();
|
||||
if (ret < 0) {
|
||||
ret = xlate_iter_errno(ret);
|
||||
goto out;
|
||||
}
|
||||
}
|
||||
|
||||
sns_push("data_avail", 0, 0);
|
||||
ret = alloc_root_meta_iter(<->data_avail, ia->cb, ia->cb_arg);
|
||||
sns_pop();
|
||||
if (ret < 0)
|
||||
goto out;
|
||||
|
||||
sns_push("data_freed", 0, 0);
|
||||
ret = alloc_root_meta_iter(<->data_freed, ia->cb, ia->cb_arg);
|
||||
sns_pop();
|
||||
if (ret < 0)
|
||||
goto out;
|
||||
|
||||
ret = 0;
|
||||
out:
|
||||
sns_pop();
|
||||
|
||||
return ret;
|
||||
}
|
||||
|
||||
/*
|
||||
* Call the callers callback with the extent of all the metadata block references contained
|
||||
* in log btrees. We walk the logs_root btree items and walk all the metadata structures
|
||||
* they reference.
|
||||
*/
|
||||
int log_trees_meta_iter(extent_cb_t cb, void *cb_arg)
|
||||
{
|
||||
struct scoutfs_super_block *super = global_super;
|
||||
struct iter_args ia = { .cb = cb, .cb_arg = cb_arg };
|
||||
|
||||
return btree_item_iter(&super->logs_root, lt_meta_iter, &ia);
|
||||
}
|
||||
8
utils/src/check/log_trees.h
Normal file
8
utils/src/check/log_trees.h
Normal file
@@ -0,0 +1,8 @@
|
||||
#ifndef _SCOUTFS_UTILS_CHECK_LOG_TREES_H_
|
||||
#define _SCOUTFS_UTILS_CHECK_LOG_TREES_H_
|
||||
|
||||
#include "extent.h"
|
||||
|
||||
int log_trees_meta_iter(extent_cb_t cb, void *cb_arg);
|
||||
|
||||
#endif
|
||||
367
utils/src/check/meta.c
Normal file
367
utils/src/check/meta.c
Normal file
@@ -0,0 +1,367 @@
|
||||
#include <unistd.h>
|
||||
#include <stdio.h>
|
||||
#include <stdlib.h>
|
||||
#include <stdbool.h>
|
||||
#include <sys/mman.h>
|
||||
#include <errno.h>
|
||||
|
||||
#include "sparse.h"
|
||||
#include "util.h"
|
||||
#include "format.h"
|
||||
#include "bitmap.h"
|
||||
#include "key.h"
|
||||
|
||||
#include "alloc.h"
|
||||
#include "btree.h"
|
||||
#include "debug.h"
|
||||
#include "extent.h"
|
||||
#include "sns.h"
|
||||
#include "log_trees.h"
|
||||
#include "meta.h"
|
||||
#include "problem.h"
|
||||
#include "super.h"
|
||||
|
||||
static struct meta_data {
|
||||
struct extent_root meta_refed;
|
||||
struct extent_root meta_free;
|
||||
struct {
|
||||
u64 ref_blocks;
|
||||
u64 free_extents;
|
||||
u64 free_blocks;
|
||||
} stats;
|
||||
} global_mdat;
|
||||
|
||||
bool valid_meta_blkno(u64 blkno)
|
||||
{
|
||||
u64 tot = le64_to_cpu(global_super->total_meta_blocks);
|
||||
|
||||
return blkno >= SCOUTFS_META_DEV_START_BLKNO && blkno < tot;
|
||||
}
|
||||
|
||||
static bool valid_meta_extent(u64 start, u64 len)
|
||||
{
|
||||
u64 tot = le64_to_cpu(global_super->total_meta_blocks);
|
||||
bool valid;
|
||||
|
||||
valid = len > 0 &&
|
||||
start >= SCOUTFS_META_DEV_START_BLKNO &&
|
||||
start < tot &&
|
||||
len <= tot &&
|
||||
((start + len) <= tot) &&
|
||||
((start + len) > start);
|
||||
|
||||
debug("start %llu len %llu valid %u", start, len, !!valid);
|
||||
|
||||
if (!valid)
|
||||
problem(PB_META_EXTENT_INVALID, "start %llu len %llu", start, len);
|
||||
|
||||
return valid;
|
||||
}
|
||||
|
||||
/*
|
||||
* Track references to individual metadata blocks. This uses the extent
|
||||
* callback type but is only ever called for single block references.
|
||||
* Any reference to a block that has already been referenced is
|
||||
* considered invalid and is ignored. Later repair will resolve
|
||||
* duplicate references.
|
||||
*/
|
||||
static int insert_meta_ref(u64 start, u64 len, void *arg)
|
||||
{
|
||||
struct meta_data *mdat = &global_mdat;
|
||||
struct extent_root *root = arg;
|
||||
int ret = 0;
|
||||
|
||||
/* this is tracking single metadata block references */
|
||||
if (len != 1) {
|
||||
ret = -EINVAL;
|
||||
goto out;
|
||||
}
|
||||
|
||||
if (valid_meta_blkno(start)) {
|
||||
ret = extent_insert_new(root, start, len);
|
||||
if (ret == 0)
|
||||
mdat->stats.ref_blocks++;
|
||||
else if (ret == -EEXIST)
|
||||
problem(PB_META_REF_OVERLAPS_EXISTING, "blkno %llu", start);
|
||||
}
|
||||
|
||||
out:
|
||||
return ret;
|
||||
}
|
||||
|
||||
static int insert_meta_free(u64 start, u64 len, void *arg)
|
||||
{
|
||||
struct meta_data *mdat = &global_mdat;
|
||||
struct extent_root *root = arg;
|
||||
int ret = 0;
|
||||
|
||||
if (valid_meta_extent(start, len)) {
|
||||
ret = extent_insert_new(root, start, len);
|
||||
if (ret == 0) {
|
||||
mdat->stats.free_extents++;
|
||||
mdat->stats.free_blocks++;
|
||||
|
||||
} else if (ret == -EEXIST) {
|
||||
problem(PB_META_FREE_OVERLAPS_EXISTING,
|
||||
"start %llu llen %llu", start, len);
|
||||
}
|
||||
|
||||
}
|
||||
|
||||
return ret;
|
||||
}
|
||||
|
||||
/*
|
||||
* Walk all metadata references in the system. This walk doesn't need
|
||||
* to read metadata that doesn't contain any metadata references so it
|
||||
* can skip the bulk of metadata blocks. This gives us the set of
|
||||
* referenced metadata blocks which we can then use to repair metadata
|
||||
* allocator structures.
|
||||
*/
|
||||
static int get_meta_refs(void)
|
||||
{
|
||||
struct meta_data *mdat = &global_mdat;
|
||||
struct scoutfs_super_block *super = global_super;
|
||||
int ret;
|
||||
|
||||
extent_root_init(&mdat->meta_refed);
|
||||
|
||||
/* XXX record reserved blocks around super as referenced */
|
||||
|
||||
sns_push("meta_alloc", 0, 0);
|
||||
ret = alloc_root_meta_iter(&super->meta_alloc[0], insert_meta_ref, &mdat->meta_refed);
|
||||
sns_pop();
|
||||
if (ret < 0)
|
||||
goto out;
|
||||
|
||||
sns_push("meta_alloc", 1, 0);
|
||||
ret = alloc_root_meta_iter(&super->meta_alloc[1], insert_meta_ref, &mdat->meta_refed);
|
||||
sns_pop();
|
||||
if (ret < 0)
|
||||
goto out;
|
||||
|
||||
sns_push("data_alloc", 1, 0);
|
||||
ret = alloc_root_meta_iter(&super->data_alloc, insert_meta_ref, &mdat->meta_refed);
|
||||
sns_pop();
|
||||
if (ret < 0)
|
||||
goto out;
|
||||
|
||||
sns_push("server_meta_avail", 0, 0);
|
||||
ret = alloc_list_meta_iter(&super->server_meta_avail[0],
|
||||
insert_meta_ref, &mdat->meta_refed);
|
||||
sns_pop();
|
||||
if (ret < 0)
|
||||
goto out;
|
||||
|
||||
sns_push("server_meta_avail", 1, 0);
|
||||
ret = alloc_list_meta_iter(&super->server_meta_avail[1],
|
||||
insert_meta_ref, &mdat->meta_refed);
|
||||
sns_pop();
|
||||
if (ret < 0)
|
||||
goto out;
|
||||
|
||||
sns_push("server_meta_freed", 0, 0);
|
||||
ret = alloc_list_meta_iter(&super->server_meta_freed[0],
|
||||
insert_meta_ref, &mdat->meta_refed);
|
||||
sns_pop();
|
||||
if (ret < 0)
|
||||
goto out;
|
||||
|
||||
sns_push("server_meta_freed", 1, 0);
|
||||
ret = alloc_list_meta_iter(&super->server_meta_freed[1],
|
||||
insert_meta_ref, &mdat->meta_refed);
|
||||
sns_pop();
|
||||
if (ret < 0)
|
||||
goto out;
|
||||
|
||||
sns_push("fs_root", 0, 0);
|
||||
ret = btree_meta_iter(&super->fs_root, insert_meta_ref, &mdat->meta_refed);
|
||||
sns_pop();
|
||||
if (ret < 0)
|
||||
goto out;
|
||||
|
||||
sns_push("logs_root", 0, 0);
|
||||
ret = btree_meta_iter(&super->logs_root, insert_meta_ref, &mdat->meta_refed);
|
||||
sns_pop();
|
||||
if (ret < 0)
|
||||
goto out;
|
||||
|
||||
sns_push("log_merge", 0, 0);
|
||||
ret = btree_meta_iter(&super->log_merge, insert_meta_ref, &mdat->meta_refed);
|
||||
sns_pop();
|
||||
if (ret < 0)
|
||||
goto out;
|
||||
|
||||
sns_push("mounted_clients", 0, 0);
|
||||
ret = btree_meta_iter(&super->mounted_clients, insert_meta_ref, &mdat->meta_refed);
|
||||
sns_pop();
|
||||
if (ret < 0)
|
||||
goto out;
|
||||
|
||||
sns_push("srch_root", 0, 0);
|
||||
ret = btree_meta_iter(&super->srch_root, insert_meta_ref, &mdat->meta_refed);
|
||||
sns_pop();
|
||||
if (ret < 0)
|
||||
goto out;
|
||||
|
||||
ret = log_trees_meta_iter(insert_meta_ref, &mdat->meta_refed);
|
||||
if (ret < 0)
|
||||
goto out;
|
||||
|
||||
printf("found %llu referenced metadata blocks\n", mdat->stats.ref_blocks);
|
||||
ret = 0;
|
||||
out:
|
||||
return ret;
|
||||
}
|
||||
|
||||
static int get_meta_free(void)
|
||||
{
|
||||
struct meta_data *mdat = &global_mdat;
|
||||
struct scoutfs_super_block *super = global_super;
|
||||
int ret;
|
||||
|
||||
extent_root_init(&mdat->meta_free);
|
||||
|
||||
sns_push("meta_alloc", 0, 0);
|
||||
ret = alloc_root_extent_iter(&super->meta_alloc[0], insert_meta_free, &mdat->meta_free);
|
||||
sns_pop();
|
||||
if (ret < 0)
|
||||
goto out;
|
||||
|
||||
sns_push("meta_alloc", 1, 0);
|
||||
ret = alloc_root_extent_iter(&super->meta_alloc[1], insert_meta_free, &mdat->meta_free);
|
||||
sns_pop();
|
||||
if (ret < 0)
|
||||
goto out;
|
||||
|
||||
sns_push("server_meta_avail", 0, 0);
|
||||
ret = alloc_list_extent_iter(&super->server_meta_avail[0],
|
||||
insert_meta_free, &mdat->meta_free);
|
||||
sns_pop();
|
||||
if (ret < 0)
|
||||
goto out;
|
||||
|
||||
sns_push("server_meta_avail", 1, 0);
|
||||
ret = alloc_list_extent_iter(&super->server_meta_avail[1],
|
||||
insert_meta_free, &mdat->meta_free);
|
||||
sns_pop();
|
||||
if (ret < 0)
|
||||
goto out;
|
||||
|
||||
sns_push("server_meta_freed", 0, 0);
|
||||
ret = alloc_list_extent_iter(&super->server_meta_freed[0],
|
||||
insert_meta_free, &mdat->meta_free);
|
||||
sns_pop();
|
||||
if (ret < 0)
|
||||
goto out;
|
||||
|
||||
sns_push("server_meta_freed", 1, 0);
|
||||
ret = alloc_list_extent_iter(&super->server_meta_freed[1],
|
||||
insert_meta_free, &mdat->meta_free);
|
||||
sns_pop();
|
||||
if (ret < 0)
|
||||
goto out;
|
||||
|
||||
printf("found %llu free metadata blocks in %llu extents\n",
|
||||
mdat->stats.free_blocks, mdat->stats.free_extents);
|
||||
ret = 0;
|
||||
out:
|
||||
return ret;
|
||||
}
|
||||
|
||||
/*
|
||||
* All the space between referenced blocks must be recorded in the free
|
||||
* extents. The free extent walk didn't check that the extents
|
||||
* overlapped with references, we do that here. Remember that metadata
|
||||
* block references were merged into extents here, the refed extents
|
||||
* aren't necessarily all a single block.
|
||||
*/
|
||||
static int compare_refs_and_free(void)
|
||||
{
|
||||
struct meta_data *mdat = &global_mdat;
|
||||
struct extent_node *ref;
|
||||
struct extent_node *free;
|
||||
struct extent_node *next;
|
||||
struct extent_node *prev;
|
||||
u64 expect;
|
||||
u64 start;
|
||||
u64 end;
|
||||
|
||||
expect = 0;
|
||||
ref = extent_first(&mdat->meta_refed);
|
||||
free = extent_first(&mdat->meta_free);
|
||||
while (ref || free) {
|
||||
|
||||
printf("exp %llu ref %llu.%llu free %llu.%llu\n",
|
||||
expect, ref ? ref->start : 0, ref ? ref->len : 0,
|
||||
free ? free->start : 0, free ? free->len : 0);
|
||||
|
||||
/* referenced marked free, remove ref from free and continue from same point */
|
||||
if (ref && free && extents_overlap(ref->start, ref->len, free->start, free->len)) {
|
||||
printf("ref extent %llu.%llu overlaps free %llu %llu\n",
|
||||
ref->start, ref->len, free->start, free->len);
|
||||
|
||||
start = max(ref->start, free->start);
|
||||
end = min(ref->start + ref->len, free->start + free->len);
|
||||
|
||||
prev = extent_prev(free);
|
||||
|
||||
extent_remove(&mdat->meta_free, start, end - start);
|
||||
|
||||
if (prev)
|
||||
free = extent_next(prev);
|
||||
else
|
||||
free = extent_first(&mdat->meta_free);
|
||||
continue;
|
||||
}
|
||||
|
||||
/* see which extent starts earlier */
|
||||
if (!free || (ref && ref->start <= free->start))
|
||||
next = ref;
|
||||
else
|
||||
next = free;
|
||||
|
||||
/* untracked region before next extent */
|
||||
if (expect < next->start) {
|
||||
printf("missing free extent %llu.%llu\n", expect, next->start - expect);
|
||||
expect = next->start;
|
||||
continue;
|
||||
}
|
||||
|
||||
|
||||
/* didn't overlap, advance past next extent */
|
||||
expect = next->start + next->len;
|
||||
if (next == ref)
|
||||
ref = extent_next(ref);
|
||||
else
|
||||
free = extent_next(free);
|
||||
}
|
||||
|
||||
return 0;
|
||||
}
|
||||
|
||||
/*
|
||||
* Check the metadata allocators by comparing the set of referenced
|
||||
* blocks with the set of free blocks that are stored in free btree
|
||||
* items and alloc list blocks.
|
||||
*/
|
||||
int check_meta_alloc(void)
|
||||
{
|
||||
int ret;
|
||||
|
||||
ret = get_meta_refs();
|
||||
if (ret < 0)
|
||||
goto out;
|
||||
|
||||
ret = get_meta_free();
|
||||
if (ret < 0)
|
||||
goto out;
|
||||
|
||||
ret = compare_refs_and_free();
|
||||
if (ret < 0)
|
||||
goto out;
|
||||
|
||||
ret = 0;
|
||||
out:
|
||||
return ret;
|
||||
}
|
||||
9
utils/src/check/meta.h
Normal file
9
utils/src/check/meta.h
Normal file
@@ -0,0 +1,9 @@
|
||||
#ifndef _SCOUTFS_UTILS_CHECK_META_H_
|
||||
#define _SCOUTFS_UTILS_CHECK_META_H_
|
||||
|
||||
bool valid_meta_blkno(u64 blkno);
|
||||
|
||||
int check_meta_alloc(void);
|
||||
|
||||
#endif
|
||||
|
||||
23
utils/src/check/padding.c
Normal file
23
utils/src/check/padding.c
Normal file
@@ -0,0 +1,23 @@
|
||||
#include <string.h>
|
||||
#include <stdbool.h>
|
||||
|
||||
#include "util.h"
|
||||
#include "padding.h"
|
||||
|
||||
bool padding_is_zeros(const void *data, size_t sz)
|
||||
{
|
||||
static char zeros[32] = {0,};
|
||||
const size_t batch = array_size(zeros);
|
||||
|
||||
while (sz >= batch) {
|
||||
if (memcmp(data, zeros, batch))
|
||||
return false;
|
||||
data += batch;
|
||||
sz -= batch;
|
||||
}
|
||||
|
||||
if (sz > 0 && memcmp(data, zeros, sz))
|
||||
return false;
|
||||
|
||||
return true;
|
||||
}
|
||||
6
utils/src/check/padding.h
Normal file
6
utils/src/check/padding.h
Normal file
@@ -0,0 +1,6 @@
|
||||
#ifndef _SCOUTFS_UTILS_CHECK_PADDING_H_
|
||||
#define _SCOUTFS_UTILS_CHECK_PADDING_H_
|
||||
|
||||
bool padding_is_zeros(const void *data, size_t sz);
|
||||
|
||||
#endif
|
||||
23
utils/src/check/problem.c
Normal file
23
utils/src/check/problem.c
Normal file
@@ -0,0 +1,23 @@
|
||||
#include <stdio.h>
|
||||
#include <stdint.h>
|
||||
|
||||
#include "problem.h"
|
||||
|
||||
#if 0
|
||||
#define PROB_STR(pb) [pb] = #pb
|
||||
static char *prob_strs[] = {
|
||||
PROB_STR(PB_META_EXTENT_INVALID),
|
||||
PROB_STR(PB_META_EXTENT_OVERLAPS_EXISTING),
|
||||
};
|
||||
#endif
|
||||
|
||||
static struct problem_data {
|
||||
uint64_t counts[PB__NR];
|
||||
} global_pdat;
|
||||
|
||||
void problem_record(prob_t pb)
|
||||
{
|
||||
struct problem_data *pdat = &global_pdat;
|
||||
|
||||
pdat->counts[pb]++;
|
||||
}
|
||||
23
utils/src/check/problem.h
Normal file
23
utils/src/check/problem.h
Normal file
@@ -0,0 +1,23 @@
|
||||
#ifndef _SCOUTFS_UTILS_CHECK_PROBLEM_H_
|
||||
#define _SCOUTFS_UTILS_CHECK_PROBLEM_H_
|
||||
|
||||
#include "debug.h"
|
||||
#include "sns.h"
|
||||
|
||||
typedef enum {
|
||||
PB_META_EXTENT_INVALID,
|
||||
PB_META_REF_OVERLAPS_EXISTING,
|
||||
PB_META_FREE_OVERLAPS_EXISTING,
|
||||
PB_BTREE_BLOCK_BAD_LEVEL,
|
||||
PB__NR,
|
||||
} prob_t;
|
||||
|
||||
#define problem(pb, fmt, ...) \
|
||||
do { \
|
||||
debug("problem found: "#pb": %s: "fmt, sns_str(), __VA_ARGS__); \
|
||||
problem_record(pb); \
|
||||
} while (0)
|
||||
|
||||
void problem_record(prob_t pb);
|
||||
|
||||
#endif
|
||||
118
utils/src/check/sns.c
Normal file
118
utils/src/check/sns.c
Normal file
@@ -0,0 +1,118 @@
|
||||
#include <stdlib.h>
|
||||
#include <string.h>
|
||||
|
||||
#include "sns.h"
|
||||
|
||||
/*
|
||||
* This "str num stack" is used to describe our location in metadata at
|
||||
* any given time.
|
||||
*
|
||||
* As we descend into structures we pop a string on decribing them,
|
||||
* perhaps with associated numbers. Pushing and popping is very cheap
|
||||
* and only rarely do we format the stack into a string, as an arbitrary
|
||||
* example:
|
||||
* super.fs_root.btree_parent:1231.btree_leaf:3231"
|
||||
*/
|
||||
|
||||
#define SNS_MAX_DEPTH 1000
|
||||
#define SNS_STR_SIZE (SNS_MAX_DEPTH * (SNS_MAX_STR_LEN + 1 + 16 + 1))
|
||||
|
||||
static struct sns_data {
|
||||
unsigned int depth;
|
||||
|
||||
struct sns_entry {
|
||||
char *str;
|
||||
size_t len;
|
||||
u64 a;
|
||||
u64 b;
|
||||
} ents[SNS_MAX_DEPTH];
|
||||
|
||||
char str[SNS_STR_SIZE];
|
||||
|
||||
} global_lsdat;
|
||||
|
||||
void _sns_push(char *str, size_t len, u64 a, u64 b)
|
||||
{
|
||||
struct sns_data *lsdat = &global_lsdat;
|
||||
|
||||
if (lsdat->depth < SNS_MAX_DEPTH) {
|
||||
lsdat->ents[lsdat->depth++] = (struct sns_entry) {
|
||||
.str = str,
|
||||
.len = len,
|
||||
.a = a,
|
||||
.b = b,
|
||||
};
|
||||
}
|
||||
}
|
||||
|
||||
void sns_pop(void)
|
||||
{
|
||||
struct sns_data *lsdat = &global_lsdat;
|
||||
|
||||
if (lsdat->depth > 0)
|
||||
lsdat->depth--;
|
||||
}
|
||||
|
||||
static char *append_str(char *pos, char *str, size_t len)
|
||||
{
|
||||
memcpy(pos, str, len);
|
||||
return pos + len;
|
||||
}
|
||||
|
||||
/*
|
||||
* This is not called for x = 0 so we don't need to emit an initial 0.
|
||||
* We could by using do {} while instead of while {}.
|
||||
*/
|
||||
static char *append_u64x(char *pos, u64 x)
|
||||
{
|
||||
static char hex[] = "0123456789abcdef";
|
||||
|
||||
while (x) {
|
||||
*pos++ = hex[x & 0xf];
|
||||
x >>= 4;
|
||||
}
|
||||
|
||||
return pos;
|
||||
}
|
||||
|
||||
static char *append_char(char *pos, char c)
|
||||
{
|
||||
*(pos++) = c;
|
||||
return pos;
|
||||
}
|
||||
|
||||
/*
|
||||
* Return a pointer to a null terminated string that describes the
|
||||
* current location stack. The string buffer is global.
|
||||
*/
|
||||
char *sns_str(void)
|
||||
{
|
||||
struct sns_data *lsdat = &global_lsdat;
|
||||
struct sns_entry *ent;
|
||||
char *pos;
|
||||
int i;
|
||||
|
||||
pos = lsdat->str;
|
||||
for (i = 0; i < lsdat->depth; i++) {
|
||||
ent = &lsdat->ents[i];
|
||||
|
||||
if (i)
|
||||
pos = append_char(pos, '.');
|
||||
|
||||
pos = append_str(pos, ent->str, ent->len);
|
||||
|
||||
if (ent->a) {
|
||||
pos = append_char(pos, ':');
|
||||
pos = append_u64x(pos, ent->a);
|
||||
}
|
||||
|
||||
if (ent->b) {
|
||||
pos = append_char(pos, ':');
|
||||
pos = append_u64x(pos, ent->b);
|
||||
}
|
||||
}
|
||||
|
||||
*pos = '\0';
|
||||
|
||||
return lsdat->str;
|
||||
}
|
||||
20
utils/src/check/sns.h
Normal file
20
utils/src/check/sns.h
Normal file
@@ -0,0 +1,20 @@
|
||||
#ifndef _SCOUTFS_UTILS_CHECK_SNS_H_
|
||||
#define _SCOUTFS_UTILS_CHECK_SNS_H_
|
||||
|
||||
#include <assert.h>
|
||||
|
||||
#include "sparse.h"
|
||||
|
||||
#define SNS_MAX_STR_LEN 20
|
||||
|
||||
#define sns_push(str, a, b) \
|
||||
do { \
|
||||
build_assert(sizeof(str) - 1 <= SNS_MAX_STR_LEN); \
|
||||
_sns_push((str), sizeof(str) - 1, a, b); \
|
||||
} while (0)
|
||||
|
||||
void _sns_push(char *str, size_t len, u64 a, u64 b);
|
||||
void sns_pop(void);
|
||||
char *sns_str(void);
|
||||
|
||||
#endif
|
||||
57
utils/src/check/super.c
Normal file
57
utils/src/check/super.c
Normal file
@@ -0,0 +1,57 @@
|
||||
#include <unistd.h>
|
||||
#include <stdio.h>
|
||||
#include <stdlib.h>
|
||||
#include <errno.h>
|
||||
|
||||
#include "sparse.h"
|
||||
#include "util.h"
|
||||
#include "format.h"
|
||||
|
||||
#include "block.h"
|
||||
#include "super.h"
|
||||
|
||||
/*
|
||||
* After we check the super blocks we provide a global buffer to track
|
||||
* the current super block. It is referenced to get static information
|
||||
* about the system and is also modified and written as part of
|
||||
* transactions.
|
||||
*/
|
||||
struct scoutfs_super_block *global_super;
|
||||
|
||||
/*
|
||||
* After checking the supers we save a copy of it in a global buffer that's used by
|
||||
* other modules to track the current super. It can be modified and written during commits.
|
||||
*/
|
||||
int check_supers(void)
|
||||
{
|
||||
struct scoutfs_super_block *super = NULL;
|
||||
struct block *blk = NULL;
|
||||
int ret;
|
||||
|
||||
global_super = malloc(sizeof(struct scoutfs_super_block));
|
||||
if (!global_super) {
|
||||
printf("error allocating super block buffer\n");
|
||||
ret = -ENOMEM;
|
||||
goto out;
|
||||
}
|
||||
|
||||
ret = block_get(&blk, SCOUTFS_SUPER_BLKNO, BF_SM);
|
||||
if (ret < 0) {
|
||||
printf("error reading super block\n");
|
||||
goto out;
|
||||
}
|
||||
|
||||
super = block_buf(blk);
|
||||
|
||||
memcpy(global_super, super, sizeof(struct scoutfs_super_block));
|
||||
ret = 0;
|
||||
out:
|
||||
block_put(&blk);
|
||||
|
||||
return ret;
|
||||
}
|
||||
|
||||
void super_shutdown(void)
|
||||
{
|
||||
free(global_super);
|
||||
}
|
||||
9
utils/src/check/super.h
Normal file
9
utils/src/check/super.h
Normal file
@@ -0,0 +1,9 @@
|
||||
#ifndef _SCOUTFS_UTILS_CHECK_SUPER_H_
|
||||
#define _SCOUTFS_UTILS_CHECK_SUPER_H_
|
||||
|
||||
extern struct scoutfs_super_block *global_super;
|
||||
|
||||
int check_supers(void);
|
||||
void super_shutdown(void);
|
||||
|
||||
#endif
|
||||
@@ -156,6 +156,16 @@ static inline void list_move_tail(struct list_head *list,
|
||||
list_add_tail(list, head);
|
||||
}
|
||||
|
||||
/**
|
||||
* list_is_head - tests whether @list is the list @head
|
||||
* @list: the entry to test
|
||||
* @head: the head of the list
|
||||
*/
|
||||
static inline int list_is_head(const struct list_head *list, const struct list_head *head)
|
||||
{
|
||||
return list == head;
|
||||
}
|
||||
|
||||
/**
|
||||
* list_empty - tests whether a list is empty
|
||||
* @head: the list to test.
|
||||
@@ -242,6 +252,15 @@ static inline void list_splice_init(struct list_head *list,
|
||||
for (pos = (head)->next, n = pos->next; pos != (head); \
|
||||
pos = n, n = pos->next)
|
||||
|
||||
/**
|
||||
* list_entry_is_head - test if the entry points to the head of the list
|
||||
* @pos: the type * to cursor
|
||||
* @head: the head for your list.
|
||||
* @member: the name of the list_head within the struct.
|
||||
*/
|
||||
#define list_entry_is_head(pos, head, member) \
|
||||
(&pos->member == (head))
|
||||
|
||||
/**
|
||||
* list_for_each_entry - iterate over list of given type
|
||||
* @pos: the type * to use as a loop counter.
|
||||
@@ -307,4 +326,28 @@ static inline void list_splice_init(struct list_head *list,
|
||||
#define list_next_entry(pos, member) \
|
||||
list_entry((pos)->member.next, typeof(*(pos)), member)
|
||||
|
||||
/**
|
||||
* list_prev_entry - get the prev element in list
|
||||
* @pos: the type * to cursor
|
||||
* @member: the name of the list_head within the struct.
|
||||
*/
|
||||
#define list_prev_entry(pos, member) \
|
||||
list_entry((pos)->member.prev, typeof(*(pos)), member)
|
||||
|
||||
/**
|
||||
* list_for_each_entry_safe_reverse - iterate backwards over list safe against removal
|
||||
* @pos: the type * to use as a loop cursor.
|
||||
* @n: another type * to use as temporary storage
|
||||
* @head: the head for your list.
|
||||
* @member: the name of the list_head within the struct.
|
||||
*
|
||||
* Iterate backwards over list of given type, safe against removal
|
||||
* of list entry.
|
||||
*/
|
||||
#define list_for_each_entry_safe_reverse(pos, n, head, member) \
|
||||
for (pos = list_last_entry(head, typeof(*pos), member), \
|
||||
n = list_prev_entry(pos, member); \
|
||||
!list_entry_is_head(pos, head, member); \
|
||||
pos = n, n = list_prev_entry(n, member))
|
||||
|
||||
#endif
|
||||
|
||||
24
utils/src/lk_rbtree_wrapper.h
Normal file
24
utils/src/lk_rbtree_wrapper.h
Normal file
@@ -0,0 +1,24 @@
|
||||
#ifndef _LK_RBTREE_WRAPPER_H_
|
||||
#define _LK_RBTREE_WRAPPER_H_
|
||||
|
||||
/*
|
||||
* We're using this lame hack to build and use the kernel's rbtree in
|
||||
* userspace. We drop the kernel's rbtree*[ch] implementation in and
|
||||
* use them with this wrapper. We only have to remove the kernel
|
||||
* includes from the imported files.
|
||||
*/
|
||||
|
||||
#include <stdbool.h>
|
||||
#include "util.h"
|
||||
|
||||
#define rcu_assign_pointer(a, b) do { a = b; } while (0)
|
||||
#define READ_ONCE(a) ({ a; })
|
||||
#define WRITE_ONCE(a, b) do { a = b; } while (0)
|
||||
#define unlikely(a) ({ a; })
|
||||
#define EXPORT_SYMBOL(a) /* nop */
|
||||
|
||||
#include "rbtree_types.h"
|
||||
#include "rbtree.h"
|
||||
#include "rbtree_augmented.h"
|
||||
|
||||
#endif
|
||||
@@ -609,6 +609,8 @@ static int print_alloc_list_block(int fd, char *str, struct scoutfs_block_ref *r
|
||||
u64 blkno;
|
||||
u64 start;
|
||||
u64 len;
|
||||
u64 st;
|
||||
u64 nr;
|
||||
int wid;
|
||||
int ret;
|
||||
int i;
|
||||
@@ -627,27 +629,37 @@ static int print_alloc_list_block(int fd, char *str, struct scoutfs_block_ref *r
|
||||
AL_REF_A(&lblk->next), le32_to_cpu(lblk->start),
|
||||
le32_to_cpu(lblk->nr));
|
||||
|
||||
if (lblk->nr) {
|
||||
wid = printf(" exts: ");
|
||||
start = 0;
|
||||
len = 0;
|
||||
for (i = 0; i < le32_to_cpu(lblk->nr); i++) {
|
||||
if (len == 0)
|
||||
start = le64_to_cpu(lblk->blknos[i]);
|
||||
len++;
|
||||
|
||||
if (i == (le32_to_cpu(lblk->nr) - 1) ||
|
||||
start + len != le64_to_cpu(lblk->blknos[i + 1])) {
|
||||
if (wid >= 72)
|
||||
wid = printf("\n ");
|
||||
|
||||
wid += printf("%llu,%llu ", start, len);
|
||||
len = 0;
|
||||
}
|
||||
}
|
||||
printf("\n");
|
||||
st = le32_to_cpu(lblk->start);
|
||||
nr = le32_to_cpu(lblk->nr);
|
||||
if (st >= SCOUTFS_ALLOC_LIST_MAX_BLOCKS ||
|
||||
nr > SCOUTFS_ALLOC_LIST_MAX_BLOCKS ||
|
||||
(st + nr) > SCOUTFS_ALLOC_LIST_MAX_BLOCKS) {
|
||||
printf(" (invalid start and nr fields)\n");
|
||||
goto out;
|
||||
}
|
||||
|
||||
if (lblk->nr == 0)
|
||||
goto out;
|
||||
|
||||
wid = printf(" exts: ");
|
||||
start = 0;
|
||||
len = 0;
|
||||
for (i = 0; i < nr; i++) {
|
||||
if (len == 0)
|
||||
start = le64_to_cpu(lblk->blknos[st + i]);
|
||||
len++;
|
||||
|
||||
if (i == (nr - 1) || (start + len) != le64_to_cpu(lblk->blknos[st + i + 1])) {
|
||||
if (wid >= 72)
|
||||
wid = printf("\n ");
|
||||
|
||||
wid += printf("%llu,%llu ", start, len);
|
||||
len = 0;
|
||||
}
|
||||
}
|
||||
printf("\n");
|
||||
|
||||
out:
|
||||
next = lblk->next;
|
||||
free(lblk);
|
||||
return print_alloc_list_block(fd, str, &next);
|
||||
|
||||
629
utils/src/rbtree.c
Normal file
629
utils/src/rbtree.c
Normal file
@@ -0,0 +1,629 @@
|
||||
// SPDX-License-Identifier: GPL-2.0-or-later
|
||||
/*
|
||||
Red Black Trees
|
||||
(C) 1999 Andrea Arcangeli <andrea@suse.de>
|
||||
(C) 2002 David Woodhouse <dwmw2@infradead.org>
|
||||
(C) 2012 Michel Lespinasse <walken@google.com>
|
||||
|
||||
|
||||
linux/lib/rbtree.c
|
||||
*/
|
||||
|
||||
#include "lk_rbtree_wrapper.h"
|
||||
|
||||
/*
|
||||
* red-black trees properties: https://en.wikipedia.org/wiki/Rbtree
|
||||
*
|
||||
* 1) A node is either red or black
|
||||
* 2) The root is black
|
||||
* 3) All leaves (NULL) are black
|
||||
* 4) Both children of every red node are black
|
||||
* 5) Every simple path from root to leaves contains the same number
|
||||
* of black nodes.
|
||||
*
|
||||
* 4 and 5 give the O(log n) guarantee, since 4 implies you cannot have two
|
||||
* consecutive red nodes in a path and every red node is therefore followed by
|
||||
* a black. So if B is the number of black nodes on every simple path (as per
|
||||
* 5), then the longest possible path due to 4 is 2B.
|
||||
*
|
||||
* We shall indicate color with case, where black nodes are uppercase and red
|
||||
* nodes will be lowercase. Unknown color nodes shall be drawn as red within
|
||||
* parentheses and have some accompanying text comment.
|
||||
*/
|
||||
|
||||
/*
|
||||
* Notes on lockless lookups:
|
||||
*
|
||||
* All stores to the tree structure (rb_left and rb_right) must be done using
|
||||
* WRITE_ONCE(). And we must not inadvertently cause (temporary) loops in the
|
||||
* tree structure as seen in program order.
|
||||
*
|
||||
* These two requirements will allow lockless iteration of the tree -- not
|
||||
* correct iteration mind you, tree rotations are not atomic so a lookup might
|
||||
* miss entire subtrees.
|
||||
*
|
||||
* But they do guarantee that any such traversal will only see valid elements
|
||||
* and that it will indeed complete -- does not get stuck in a loop.
|
||||
*
|
||||
* It also guarantees that if the lookup returns an element it is the 'correct'
|
||||
* one. But not returning an element does _NOT_ mean it's not present.
|
||||
*
|
||||
* NOTE:
|
||||
*
|
||||
* Stores to __rb_parent_color are not important for simple lookups so those
|
||||
* are left undone as of now. Nor did I check for loops involving parent
|
||||
* pointers.
|
||||
*/
|
||||
|
||||
static inline void rb_set_black(struct rb_node *rb)
|
||||
{
|
||||
rb->__rb_parent_color |= RB_BLACK;
|
||||
}
|
||||
|
||||
static inline struct rb_node *rb_red_parent(struct rb_node *red)
|
||||
{
|
||||
return (struct rb_node *)red->__rb_parent_color;
|
||||
}
|
||||
|
||||
/*
|
||||
* Helper function for rotations:
|
||||
* - old's parent and color get assigned to new
|
||||
* - old gets assigned new as a parent and 'color' as a color.
|
||||
*/
|
||||
static inline void
|
||||
__rb_rotate_set_parents(struct rb_node *old, struct rb_node *new,
|
||||
struct rb_root *root, int color)
|
||||
{
|
||||
struct rb_node *parent = rb_parent(old);
|
||||
new->__rb_parent_color = old->__rb_parent_color;
|
||||
rb_set_parent_color(old, new, color);
|
||||
__rb_change_child(old, new, parent, root);
|
||||
}
|
||||
|
||||
static __always_inline void
|
||||
__rb_insert(struct rb_node *node, struct rb_root *root,
|
||||
void (*augment_rotate)(struct rb_node *old, struct rb_node *new))
|
||||
{
|
||||
struct rb_node *parent = rb_red_parent(node), *gparent, *tmp;
|
||||
|
||||
while (true) {
|
||||
/*
|
||||
* Loop invariant: node is red.
|
||||
*/
|
||||
if (unlikely(!parent)) {
|
||||
/*
|
||||
* The inserted node is root. Either this is the
|
||||
* first node, or we recursed at Case 1 below and
|
||||
* are no longer violating 4).
|
||||
*/
|
||||
rb_set_parent_color(node, NULL, RB_BLACK);
|
||||
break;
|
||||
}
|
||||
|
||||
/*
|
||||
* If there is a black parent, we are done.
|
||||
* Otherwise, take some corrective action as,
|
||||
* per 4), we don't want a red root or two
|
||||
* consecutive red nodes.
|
||||
*/
|
||||
if(rb_is_black(parent))
|
||||
break;
|
||||
|
||||
gparent = rb_red_parent(parent);
|
||||
|
||||
tmp = gparent->rb_right;
|
||||
if (parent != tmp) { /* parent == gparent->rb_left */
|
||||
if (tmp && rb_is_red(tmp)) {
|
||||
/*
|
||||
* Case 1 - node's uncle is red (color flips).
|
||||
*
|
||||
* G g
|
||||
* / \ / \
|
||||
* p u --> P U
|
||||
* / /
|
||||
* n n
|
||||
*
|
||||
* However, since g's parent might be red, and
|
||||
* 4) does not allow this, we need to recurse
|
||||
* at g.
|
||||
*/
|
||||
rb_set_parent_color(tmp, gparent, RB_BLACK);
|
||||
rb_set_parent_color(parent, gparent, RB_BLACK);
|
||||
node = gparent;
|
||||
parent = rb_parent(node);
|
||||
rb_set_parent_color(node, parent, RB_RED);
|
||||
continue;
|
||||
}
|
||||
|
||||
tmp = parent->rb_right;
|
||||
if (node == tmp) {
|
||||
/*
|
||||
* Case 2 - node's uncle is black and node is
|
||||
* the parent's right child (left rotate at parent).
|
||||
*
|
||||
* G G
|
||||
* / \ / \
|
||||
* p U --> n U
|
||||
* \ /
|
||||
* n p
|
||||
*
|
||||
* This still leaves us in violation of 4), the
|
||||
* continuation into Case 3 will fix that.
|
||||
*/
|
||||
tmp = node->rb_left;
|
||||
WRITE_ONCE(parent->rb_right, tmp);
|
||||
WRITE_ONCE(node->rb_left, parent);
|
||||
if (tmp)
|
||||
rb_set_parent_color(tmp, parent,
|
||||
RB_BLACK);
|
||||
rb_set_parent_color(parent, node, RB_RED);
|
||||
augment_rotate(parent, node);
|
||||
parent = node;
|
||||
tmp = node->rb_right;
|
||||
}
|
||||
|
||||
/*
|
||||
* Case 3 - node's uncle is black and node is
|
||||
* the parent's left child (right rotate at gparent).
|
||||
*
|
||||
* G P
|
||||
* / \ / \
|
||||
* p U --> n g
|
||||
* / \
|
||||
* n U
|
||||
*/
|
||||
WRITE_ONCE(gparent->rb_left, tmp); /* == parent->rb_right */
|
||||
WRITE_ONCE(parent->rb_right, gparent);
|
||||
if (tmp)
|
||||
rb_set_parent_color(tmp, gparent, RB_BLACK);
|
||||
__rb_rotate_set_parents(gparent, parent, root, RB_RED);
|
||||
augment_rotate(gparent, parent);
|
||||
break;
|
||||
} else {
|
||||
tmp = gparent->rb_left;
|
||||
if (tmp && rb_is_red(tmp)) {
|
||||
/* Case 1 - color flips */
|
||||
rb_set_parent_color(tmp, gparent, RB_BLACK);
|
||||
rb_set_parent_color(parent, gparent, RB_BLACK);
|
||||
node = gparent;
|
||||
parent = rb_parent(node);
|
||||
rb_set_parent_color(node, parent, RB_RED);
|
||||
continue;
|
||||
}
|
||||
|
||||
tmp = parent->rb_left;
|
||||
if (node == tmp) {
|
||||
/* Case 2 - right rotate at parent */
|
||||
tmp = node->rb_right;
|
||||
WRITE_ONCE(parent->rb_left, tmp);
|
||||
WRITE_ONCE(node->rb_right, parent);
|
||||
if (tmp)
|
||||
rb_set_parent_color(tmp, parent,
|
||||
RB_BLACK);
|
||||
rb_set_parent_color(parent, node, RB_RED);
|
||||
augment_rotate(parent, node);
|
||||
parent = node;
|
||||
tmp = node->rb_left;
|
||||
}
|
||||
|
||||
/* Case 3 - left rotate at gparent */
|
||||
WRITE_ONCE(gparent->rb_right, tmp); /* == parent->rb_left */
|
||||
WRITE_ONCE(parent->rb_left, gparent);
|
||||
if (tmp)
|
||||
rb_set_parent_color(tmp, gparent, RB_BLACK);
|
||||
__rb_rotate_set_parents(gparent, parent, root, RB_RED);
|
||||
augment_rotate(gparent, parent);
|
||||
break;
|
||||
}
|
||||
}
|
||||
}
|
||||
|
||||
/*
|
||||
* Inline version for rb_erase() use - we want to be able to inline
|
||||
* and eliminate the dummy_rotate callback there
|
||||
*/
|
||||
static __always_inline void
|
||||
____rb_erase_color(struct rb_node *parent, struct rb_root *root,
|
||||
void (*augment_rotate)(struct rb_node *old, struct rb_node *new))
|
||||
{
|
||||
struct rb_node *node = NULL, *sibling, *tmp1, *tmp2;
|
||||
|
||||
while (true) {
|
||||
/*
|
||||
* Loop invariants:
|
||||
* - node is black (or NULL on first iteration)
|
||||
* - node is not the root (parent is not NULL)
|
||||
* - All leaf paths going through parent and node have a
|
||||
* black node count that is 1 lower than other leaf paths.
|
||||
*/
|
||||
sibling = parent->rb_right;
|
||||
if (node != sibling) { /* node == parent->rb_left */
|
||||
if (rb_is_red(sibling)) {
|
||||
/*
|
||||
* Case 1 - left rotate at parent
|
||||
*
|
||||
* P S
|
||||
* / \ / \
|
||||
* N s --> p Sr
|
||||
* / \ / \
|
||||
* Sl Sr N Sl
|
||||
*/
|
||||
tmp1 = sibling->rb_left;
|
||||
WRITE_ONCE(parent->rb_right, tmp1);
|
||||
WRITE_ONCE(sibling->rb_left, parent);
|
||||
rb_set_parent_color(tmp1, parent, RB_BLACK);
|
||||
__rb_rotate_set_parents(parent, sibling, root,
|
||||
RB_RED);
|
||||
augment_rotate(parent, sibling);
|
||||
sibling = tmp1;
|
||||
}
|
||||
tmp1 = sibling->rb_right;
|
||||
if (!tmp1 || rb_is_black(tmp1)) {
|
||||
tmp2 = sibling->rb_left;
|
||||
if (!tmp2 || rb_is_black(tmp2)) {
|
||||
/*
|
||||
* Case 2 - sibling color flip
|
||||
* (p could be either color here)
|
||||
*
|
||||
* (p) (p)
|
||||
* / \ / \
|
||||
* N S --> N s
|
||||
* / \ / \
|
||||
* Sl Sr Sl Sr
|
||||
*
|
||||
* This leaves us violating 5) which
|
||||
* can be fixed by flipping p to black
|
||||
* if it was red, or by recursing at p.
|
||||
* p is red when coming from Case 1.
|
||||
*/
|
||||
rb_set_parent_color(sibling, parent,
|
||||
RB_RED);
|
||||
if (rb_is_red(parent))
|
||||
rb_set_black(parent);
|
||||
else {
|
||||
node = parent;
|
||||
parent = rb_parent(node);
|
||||
if (parent)
|
||||
continue;
|
||||
}
|
||||
break;
|
||||
}
|
||||
/*
|
||||
* Case 3 - right rotate at sibling
|
||||
* (p could be either color here)
|
||||
*
|
||||
* (p) (p)
|
||||
* / \ / \
|
||||
* N S --> N sl
|
||||
* / \ \
|
||||
* sl Sr S
|
||||
* \
|
||||
* Sr
|
||||
*
|
||||
* Note: p might be red, and then both
|
||||
* p and sl are red after rotation(which
|
||||
* breaks property 4). This is fixed in
|
||||
* Case 4 (in __rb_rotate_set_parents()
|
||||
* which set sl the color of p
|
||||
* and set p RB_BLACK)
|
||||
*
|
||||
* (p) (sl)
|
||||
* / \ / \
|
||||
* N sl --> P S
|
||||
* \ / \
|
||||
* S N Sr
|
||||
* \
|
||||
* Sr
|
||||
*/
|
||||
tmp1 = tmp2->rb_right;
|
||||
WRITE_ONCE(sibling->rb_left, tmp1);
|
||||
WRITE_ONCE(tmp2->rb_right, sibling);
|
||||
WRITE_ONCE(parent->rb_right, tmp2);
|
||||
if (tmp1)
|
||||
rb_set_parent_color(tmp1, sibling,
|
||||
RB_BLACK);
|
||||
augment_rotate(sibling, tmp2);
|
||||
tmp1 = sibling;
|
||||
sibling = tmp2;
|
||||
}
|
||||
/*
|
||||
* Case 4 - left rotate at parent + color flips
|
||||
* (p and sl could be either color here.
|
||||
* After rotation, p becomes black, s acquires
|
||||
* p's color, and sl keeps its color)
|
||||
*
|
||||
* (p) (s)
|
||||
* / \ / \
|
||||
* N S --> P Sr
|
||||
* / \ / \
|
||||
* (sl) sr N (sl)
|
||||
*/
|
||||
tmp2 = sibling->rb_left;
|
||||
WRITE_ONCE(parent->rb_right, tmp2);
|
||||
WRITE_ONCE(sibling->rb_left, parent);
|
||||
rb_set_parent_color(tmp1, sibling, RB_BLACK);
|
||||
if (tmp2)
|
||||
rb_set_parent(tmp2, parent);
|
||||
__rb_rotate_set_parents(parent, sibling, root,
|
||||
RB_BLACK);
|
||||
augment_rotate(parent, sibling);
|
||||
break;
|
||||
} else {
|
||||
sibling = parent->rb_left;
|
||||
if (rb_is_red(sibling)) {
|
||||
/* Case 1 - right rotate at parent */
|
||||
tmp1 = sibling->rb_right;
|
||||
WRITE_ONCE(parent->rb_left, tmp1);
|
||||
WRITE_ONCE(sibling->rb_right, parent);
|
||||
rb_set_parent_color(tmp1, parent, RB_BLACK);
|
||||
__rb_rotate_set_parents(parent, sibling, root,
|
||||
RB_RED);
|
||||
augment_rotate(parent, sibling);
|
||||
sibling = tmp1;
|
||||
}
|
||||
tmp1 = sibling->rb_left;
|
||||
if (!tmp1 || rb_is_black(tmp1)) {
|
||||
tmp2 = sibling->rb_right;
|
||||
if (!tmp2 || rb_is_black(tmp2)) {
|
||||
/* Case 2 - sibling color flip */
|
||||
rb_set_parent_color(sibling, parent,
|
||||
RB_RED);
|
||||
if (rb_is_red(parent))
|
||||
rb_set_black(parent);
|
||||
else {
|
||||
node = parent;
|
||||
parent = rb_parent(node);
|
||||
if (parent)
|
||||
continue;
|
||||
}
|
||||
break;
|
||||
}
|
||||
/* Case 3 - left rotate at sibling */
|
||||
tmp1 = tmp2->rb_left;
|
||||
WRITE_ONCE(sibling->rb_right, tmp1);
|
||||
WRITE_ONCE(tmp2->rb_left, sibling);
|
||||
WRITE_ONCE(parent->rb_left, tmp2);
|
||||
if (tmp1)
|
||||
rb_set_parent_color(tmp1, sibling,
|
||||
RB_BLACK);
|
||||
augment_rotate(sibling, tmp2);
|
||||
tmp1 = sibling;
|
||||
sibling = tmp2;
|
||||
}
|
||||
/* Case 4 - right rotate at parent + color flips */
|
||||
tmp2 = sibling->rb_right;
|
||||
WRITE_ONCE(parent->rb_left, tmp2);
|
||||
WRITE_ONCE(sibling->rb_right, parent);
|
||||
rb_set_parent_color(tmp1, sibling, RB_BLACK);
|
||||
if (tmp2)
|
||||
rb_set_parent(tmp2, parent);
|
||||
__rb_rotate_set_parents(parent, sibling, root,
|
||||
RB_BLACK);
|
||||
augment_rotate(parent, sibling);
|
||||
break;
|
||||
}
|
||||
}
|
||||
}
|
||||
|
||||
/* Non-inline version for rb_erase_augmented() use */
|
||||
void __rb_erase_color(struct rb_node *parent, struct rb_root *root,
|
||||
void (*augment_rotate)(struct rb_node *old, struct rb_node *new))
|
||||
{
|
||||
____rb_erase_color(parent, root, augment_rotate);
|
||||
}
|
||||
EXPORT_SYMBOL(__rb_erase_color);
|
||||
|
||||
/*
|
||||
* Non-augmented rbtree manipulation functions.
|
||||
*
|
||||
* We use dummy augmented callbacks here, and have the compiler optimize them
|
||||
* out of the rb_insert_color() and rb_erase() function definitions.
|
||||
*/
|
||||
|
||||
static inline void dummy_propagate(struct rb_node *node, struct rb_node *stop) {}
|
||||
static inline void dummy_copy(struct rb_node *old, struct rb_node *new) {}
|
||||
static inline void dummy_rotate(struct rb_node *old, struct rb_node *new) {}
|
||||
|
||||
static const struct rb_augment_callbacks dummy_callbacks = {
|
||||
.propagate = dummy_propagate,
|
||||
.copy = dummy_copy,
|
||||
.rotate = dummy_rotate
|
||||
};
|
||||
|
||||
void rb_insert_color(struct rb_node *node, struct rb_root *root)
|
||||
{
|
||||
__rb_insert(node, root, dummy_rotate);
|
||||
}
|
||||
EXPORT_SYMBOL(rb_insert_color);
|
||||
|
||||
void rb_erase(struct rb_node *node, struct rb_root *root)
|
||||
{
|
||||
struct rb_node *rebalance;
|
||||
rebalance = __rb_erase_augmented(node, root, &dummy_callbacks);
|
||||
if (rebalance)
|
||||
____rb_erase_color(rebalance, root, dummy_rotate);
|
||||
}
|
||||
EXPORT_SYMBOL(rb_erase);
|
||||
|
||||
/*
|
||||
* Augmented rbtree manipulation functions.
|
||||
*
|
||||
* This instantiates the same __always_inline functions as in the non-augmented
|
||||
* case, but this time with user-defined callbacks.
|
||||
*/
|
||||
|
||||
void __rb_insert_augmented(struct rb_node *node, struct rb_root *root,
|
||||
void (*augment_rotate)(struct rb_node *old, struct rb_node *new))
|
||||
{
|
||||
__rb_insert(node, root, augment_rotate);
|
||||
}
|
||||
EXPORT_SYMBOL(__rb_insert_augmented);
|
||||
|
||||
/*
|
||||
* This function returns the first node (in sort order) of the tree.
|
||||
*/
|
||||
struct rb_node *rb_first(const struct rb_root *root)
|
||||
{
|
||||
struct rb_node *n;
|
||||
|
||||
n = root->rb_node;
|
||||
if (!n)
|
||||
return NULL;
|
||||
while (n->rb_left)
|
||||
n = n->rb_left;
|
||||
return n;
|
||||
}
|
||||
EXPORT_SYMBOL(rb_first);
|
||||
|
||||
struct rb_node *rb_last(const struct rb_root *root)
|
||||
{
|
||||
struct rb_node *n;
|
||||
|
||||
n = root->rb_node;
|
||||
if (!n)
|
||||
return NULL;
|
||||
while (n->rb_right)
|
||||
n = n->rb_right;
|
||||
return n;
|
||||
}
|
||||
EXPORT_SYMBOL(rb_last);
|
||||
|
||||
struct rb_node *rb_next(const struct rb_node *node)
|
||||
{
|
||||
struct rb_node *parent;
|
||||
|
||||
if (RB_EMPTY_NODE(node))
|
||||
return NULL;
|
||||
|
||||
/*
|
||||
* If we have a right-hand child, go down and then left as far
|
||||
* as we can.
|
||||
*/
|
||||
if (node->rb_right) {
|
||||
node = node->rb_right;
|
||||
while (node->rb_left)
|
||||
node = node->rb_left;
|
||||
return (struct rb_node *)node;
|
||||
}
|
||||
|
||||
/*
|
||||
* No right-hand children. Everything down and left is smaller than us,
|
||||
* so any 'next' node must be in the general direction of our parent.
|
||||
* Go up the tree; any time the ancestor is a right-hand child of its
|
||||
* parent, keep going up. First time it's a left-hand child of its
|
||||
* parent, said parent is our 'next' node.
|
||||
*/
|
||||
while ((parent = rb_parent(node)) && node == parent->rb_right)
|
||||
node = parent;
|
||||
|
||||
return parent;
|
||||
}
|
||||
EXPORT_SYMBOL(rb_next);
|
||||
|
||||
struct rb_node *rb_prev(const struct rb_node *node)
|
||||
{
|
||||
struct rb_node *parent;
|
||||
|
||||
if (RB_EMPTY_NODE(node))
|
||||
return NULL;
|
||||
|
||||
/*
|
||||
* If we have a left-hand child, go down and then right as far
|
||||
* as we can.
|
||||
*/
|
||||
if (node->rb_left) {
|
||||
node = node->rb_left;
|
||||
while (node->rb_right)
|
||||
node = node->rb_right;
|
||||
return (struct rb_node *)node;
|
||||
}
|
||||
|
||||
/*
|
||||
* No left-hand children. Go up till we find an ancestor which
|
||||
* is a right-hand child of its parent.
|
||||
*/
|
||||
while ((parent = rb_parent(node)) && node == parent->rb_left)
|
||||
node = parent;
|
||||
|
||||
return parent;
|
||||
}
|
||||
EXPORT_SYMBOL(rb_prev);
|
||||
|
||||
void rb_replace_node(struct rb_node *victim, struct rb_node *new,
|
||||
struct rb_root *root)
|
||||
{
|
||||
struct rb_node *parent = rb_parent(victim);
|
||||
|
||||
/* Copy the pointers/colour from the victim to the replacement */
|
||||
*new = *victim;
|
||||
|
||||
/* Set the surrounding nodes to point to the replacement */
|
||||
if (victim->rb_left)
|
||||
rb_set_parent(victim->rb_left, new);
|
||||
if (victim->rb_right)
|
||||
rb_set_parent(victim->rb_right, new);
|
||||
__rb_change_child(victim, new, parent, root);
|
||||
}
|
||||
EXPORT_SYMBOL(rb_replace_node);
|
||||
|
||||
void rb_replace_node_rcu(struct rb_node *victim, struct rb_node *new,
|
||||
struct rb_root *root)
|
||||
{
|
||||
struct rb_node *parent = rb_parent(victim);
|
||||
|
||||
/* Copy the pointers/colour from the victim to the replacement */
|
||||
*new = *victim;
|
||||
|
||||
/* Set the surrounding nodes to point to the replacement */
|
||||
if (victim->rb_left)
|
||||
rb_set_parent(victim->rb_left, new);
|
||||
if (victim->rb_right)
|
||||
rb_set_parent(victim->rb_right, new);
|
||||
|
||||
/* Set the parent's pointer to the new node last after an RCU barrier
|
||||
* so that the pointers onwards are seen to be set correctly when doing
|
||||
* an RCU walk over the tree.
|
||||
*/
|
||||
__rb_change_child_rcu(victim, new, parent, root);
|
||||
}
|
||||
EXPORT_SYMBOL(rb_replace_node_rcu);
|
||||
|
||||
static struct rb_node *rb_left_deepest_node(const struct rb_node *node)
|
||||
{
|
||||
for (;;) {
|
||||
if (node->rb_left)
|
||||
node = node->rb_left;
|
||||
else if (node->rb_right)
|
||||
node = node->rb_right;
|
||||
else
|
||||
return (struct rb_node *)node;
|
||||
}
|
||||
}
|
||||
|
||||
struct rb_node *rb_next_postorder(const struct rb_node *node)
|
||||
{
|
||||
const struct rb_node *parent;
|
||||
if (!node)
|
||||
return NULL;
|
||||
parent = rb_parent(node);
|
||||
|
||||
/* If we're sitting on node, we've already seen our children */
|
||||
if (parent && node == parent->rb_left && parent->rb_right) {
|
||||
/* If we are the parent's left node, go to the parent's right
|
||||
* node then all the way down to the left */
|
||||
return rb_left_deepest_node(parent->rb_right);
|
||||
} else
|
||||
/* Otherwise we are the parent's right node, and the parent
|
||||
* should be next */
|
||||
return (struct rb_node *)parent;
|
||||
}
|
||||
EXPORT_SYMBOL(rb_next_postorder);
|
||||
|
||||
struct rb_node *rb_first_postorder(const struct rb_root *root)
|
||||
{
|
||||
if (!root->rb_node)
|
||||
return NULL;
|
||||
|
||||
return rb_left_deepest_node(root->rb_node);
|
||||
}
|
||||
EXPORT_SYMBOL(rb_first_postorder);
|
||||
328
utils/src/rbtree.h
Normal file
328
utils/src/rbtree.h
Normal file
@@ -0,0 +1,328 @@
|
||||
/* SPDX-License-Identifier: GPL-2.0-or-later */
|
||||
/*
|
||||
Red Black Trees
|
||||
(C) 1999 Andrea Arcangeli <andrea@suse.de>
|
||||
|
||||
|
||||
linux/include/linux/rbtree.h
|
||||
|
||||
To use rbtrees you'll have to implement your own insert and search cores.
|
||||
This will avoid us to use callbacks and to drop drammatically performances.
|
||||
I know it's not the cleaner way, but in C (not in C++) to get
|
||||
performances and genericity...
|
||||
|
||||
See Documentation/core-api/rbtree.rst for documentation and samples.
|
||||
*/
|
||||
|
||||
#ifndef _LINUX_RBTREE_H
|
||||
#define _LINUX_RBTREE_H
|
||||
|
||||
#define rb_parent(r) ((struct rb_node *)((r)->__rb_parent_color & ~3))
|
||||
|
||||
#define rb_entry(ptr, type, member) container_of(ptr, type, member)
|
||||
|
||||
#define RB_EMPTY_ROOT(root) (READ_ONCE((root)->rb_node) == NULL)
|
||||
|
||||
/* 'empty' nodes are nodes that are known not to be inserted in an rbtree */
|
||||
#define RB_EMPTY_NODE(node) \
|
||||
((node)->__rb_parent_color == (unsigned long)(node))
|
||||
#define RB_CLEAR_NODE(node) \
|
||||
((node)->__rb_parent_color = (unsigned long)(node))
|
||||
|
||||
|
||||
extern void rb_insert_color(struct rb_node *, struct rb_root *);
|
||||
extern void rb_erase(struct rb_node *, struct rb_root *);
|
||||
|
||||
|
||||
/* Find logical next and previous nodes in a tree */
|
||||
extern struct rb_node *rb_next(const struct rb_node *);
|
||||
extern struct rb_node *rb_prev(const struct rb_node *);
|
||||
extern struct rb_node *rb_first(const struct rb_root *);
|
||||
extern struct rb_node *rb_last(const struct rb_root *);
|
||||
|
||||
/* Postorder iteration - always visit the parent after its children */
|
||||
extern struct rb_node *rb_first_postorder(const struct rb_root *);
|
||||
extern struct rb_node *rb_next_postorder(const struct rb_node *);
|
||||
|
||||
/* Fast replacement of a single node without remove/rebalance/add/rebalance */
|
||||
extern void rb_replace_node(struct rb_node *victim, struct rb_node *new,
|
||||
struct rb_root *root);
|
||||
extern void rb_replace_node_rcu(struct rb_node *victim, struct rb_node *new,
|
||||
struct rb_root *root);
|
||||
|
||||
static inline void rb_link_node(struct rb_node *node, struct rb_node *parent,
|
||||
struct rb_node **rb_link)
|
||||
{
|
||||
node->__rb_parent_color = (unsigned long)parent;
|
||||
node->rb_left = node->rb_right = NULL;
|
||||
|
||||
*rb_link = node;
|
||||
}
|
||||
|
||||
static inline void rb_link_node_rcu(struct rb_node *node, struct rb_node *parent,
|
||||
struct rb_node **rb_link)
|
||||
{
|
||||
node->__rb_parent_color = (unsigned long)parent;
|
||||
node->rb_left = node->rb_right = NULL;
|
||||
|
||||
rcu_assign_pointer(*rb_link, node);
|
||||
}
|
||||
|
||||
#define rb_entry_safe(ptr, type, member) \
|
||||
({ typeof(ptr) ____ptr = (ptr); \
|
||||
____ptr ? rb_entry(____ptr, type, member) : NULL; \
|
||||
})
|
||||
|
||||
/**
|
||||
* rbtree_postorder_for_each_entry_safe - iterate in post-order over rb_root of
|
||||
* given type allowing the backing memory of @pos to be invalidated
|
||||
*
|
||||
* @pos: the 'type *' to use as a loop cursor.
|
||||
* @n: another 'type *' to use as temporary storage
|
||||
* @root: 'rb_root *' of the rbtree.
|
||||
* @field: the name of the rb_node field within 'type'.
|
||||
*
|
||||
* rbtree_postorder_for_each_entry_safe() provides a similar guarantee as
|
||||
* list_for_each_entry_safe() and allows the iteration to continue independent
|
||||
* of changes to @pos by the body of the loop.
|
||||
*
|
||||
* Note, however, that it cannot handle other modifications that re-order the
|
||||
* rbtree it is iterating over. This includes calling rb_erase() on @pos, as
|
||||
* rb_erase() may rebalance the tree, causing us to miss some nodes.
|
||||
*/
|
||||
#define rbtree_postorder_for_each_entry_safe(pos, n, root, field) \
|
||||
for (pos = rb_entry_safe(rb_first_postorder(root), typeof(*pos), field); \
|
||||
pos && ({ n = rb_entry_safe(rb_next_postorder(&pos->field), \
|
||||
typeof(*pos), field); 1; }); \
|
||||
pos = n)
|
||||
|
||||
/* Same as rb_first(), but O(1) */
|
||||
#define rb_first_cached(root) (root)->rb_leftmost
|
||||
|
||||
static inline void rb_insert_color_cached(struct rb_node *node,
|
||||
struct rb_root_cached *root,
|
||||
bool leftmost)
|
||||
{
|
||||
if (leftmost)
|
||||
root->rb_leftmost = node;
|
||||
rb_insert_color(node, &root->rb_root);
|
||||
}
|
||||
|
||||
|
||||
static inline struct rb_node *
|
||||
rb_erase_cached(struct rb_node *node, struct rb_root_cached *root)
|
||||
{
|
||||
struct rb_node *leftmost = NULL;
|
||||
|
||||
if (root->rb_leftmost == node)
|
||||
leftmost = root->rb_leftmost = rb_next(node);
|
||||
|
||||
rb_erase(node, &root->rb_root);
|
||||
|
||||
return leftmost;
|
||||
}
|
||||
|
||||
static inline void rb_replace_node_cached(struct rb_node *victim,
|
||||
struct rb_node *new,
|
||||
struct rb_root_cached *root)
|
||||
{
|
||||
if (root->rb_leftmost == victim)
|
||||
root->rb_leftmost = new;
|
||||
rb_replace_node(victim, new, &root->rb_root);
|
||||
}
|
||||
|
||||
/*
|
||||
* The below helper functions use 2 operators with 3 different
|
||||
* calling conventions. The operators are related like:
|
||||
*
|
||||
* comp(a->key,b) < 0 := less(a,b)
|
||||
* comp(a->key,b) > 0 := less(b,a)
|
||||
* comp(a->key,b) == 0 := !less(a,b) && !less(b,a)
|
||||
*
|
||||
* If these operators define a partial order on the elements we make no
|
||||
* guarantee on which of the elements matching the key is found. See
|
||||
* rb_find().
|
||||
*
|
||||
* The reason for this is to allow the find() interface without requiring an
|
||||
* on-stack dummy object, which might not be feasible due to object size.
|
||||
*/
|
||||
|
||||
/**
|
||||
* rb_add_cached() - insert @node into the leftmost cached tree @tree
|
||||
* @node: node to insert
|
||||
* @tree: leftmost cached tree to insert @node into
|
||||
* @less: operator defining the (partial) node order
|
||||
*
|
||||
* Returns @node when it is the new leftmost, or NULL.
|
||||
*/
|
||||
static __always_inline struct rb_node *
|
||||
rb_add_cached(struct rb_node *node, struct rb_root_cached *tree,
|
||||
bool (*less)(struct rb_node *, const struct rb_node *))
|
||||
{
|
||||
struct rb_node **link = &tree->rb_root.rb_node;
|
||||
struct rb_node *parent = NULL;
|
||||
bool leftmost = true;
|
||||
|
||||
while (*link) {
|
||||
parent = *link;
|
||||
if (less(node, parent)) {
|
||||
link = &parent->rb_left;
|
||||
} else {
|
||||
link = &parent->rb_right;
|
||||
leftmost = false;
|
||||
}
|
||||
}
|
||||
|
||||
rb_link_node(node, parent, link);
|
||||
rb_insert_color_cached(node, tree, leftmost);
|
||||
|
||||
return leftmost ? node : NULL;
|
||||
}
|
||||
|
||||
/**
|
||||
* rb_add() - insert @node into @tree
|
||||
* @node: node to insert
|
||||
* @tree: tree to insert @node into
|
||||
* @less: operator defining the (partial) node order
|
||||
*/
|
||||
static __always_inline void
|
||||
rb_add(struct rb_node *node, struct rb_root *tree,
|
||||
bool (*less)(struct rb_node *, const struct rb_node *))
|
||||
{
|
||||
struct rb_node **link = &tree->rb_node;
|
||||
struct rb_node *parent = NULL;
|
||||
|
||||
while (*link) {
|
||||
parent = *link;
|
||||
if (less(node, parent))
|
||||
link = &parent->rb_left;
|
||||
else
|
||||
link = &parent->rb_right;
|
||||
}
|
||||
|
||||
rb_link_node(node, parent, link);
|
||||
rb_insert_color(node, tree);
|
||||
}
|
||||
|
||||
/**
|
||||
* rb_find_add() - find equivalent @node in @tree, or add @node
|
||||
* @node: node to look-for / insert
|
||||
* @tree: tree to search / modify
|
||||
* @cmp: operator defining the node order
|
||||
*
|
||||
* Returns the rb_node matching @node, or NULL when no match is found and @node
|
||||
* is inserted.
|
||||
*/
|
||||
static __always_inline struct rb_node *
|
||||
rb_find_add(struct rb_node *node, struct rb_root *tree,
|
||||
int (*cmp)(struct rb_node *, const struct rb_node *))
|
||||
{
|
||||
struct rb_node **link = &tree->rb_node;
|
||||
struct rb_node *parent = NULL;
|
||||
int c;
|
||||
|
||||
while (*link) {
|
||||
parent = *link;
|
||||
c = cmp(node, parent);
|
||||
|
||||
if (c < 0)
|
||||
link = &parent->rb_left;
|
||||
else if (c > 0)
|
||||
link = &parent->rb_right;
|
||||
else
|
||||
return parent;
|
||||
}
|
||||
|
||||
rb_link_node(node, parent, link);
|
||||
rb_insert_color(node, tree);
|
||||
return NULL;
|
||||
}
|
||||
|
||||
/**
|
||||
* rb_find() - find @key in tree @tree
|
||||
* @key: key to match
|
||||
* @tree: tree to search
|
||||
* @cmp: operator defining the node order
|
||||
*
|
||||
* Returns the rb_node matching @key or NULL.
|
||||
*/
|
||||
static __always_inline struct rb_node *
|
||||
rb_find(const void *key, const struct rb_root *tree,
|
||||
int (*cmp)(const void *key, const struct rb_node *))
|
||||
{
|
||||
struct rb_node *node = tree->rb_node;
|
||||
|
||||
while (node) {
|
||||
int c = cmp(key, node);
|
||||
|
||||
if (c < 0)
|
||||
node = node->rb_left;
|
||||
else if (c > 0)
|
||||
node = node->rb_right;
|
||||
else
|
||||
return node;
|
||||
}
|
||||
|
||||
return NULL;
|
||||
}
|
||||
|
||||
/**
|
||||
* rb_find_first() - find the first @key in @tree
|
||||
* @key: key to match
|
||||
* @tree: tree to search
|
||||
* @cmp: operator defining node order
|
||||
*
|
||||
* Returns the leftmost node matching @key, or NULL.
|
||||
*/
|
||||
static __always_inline struct rb_node *
|
||||
rb_find_first(const void *key, const struct rb_root *tree,
|
||||
int (*cmp)(const void *key, const struct rb_node *))
|
||||
{
|
||||
struct rb_node *node = tree->rb_node;
|
||||
struct rb_node *match = NULL;
|
||||
|
||||
while (node) {
|
||||
int c = cmp(key, node);
|
||||
|
||||
if (c <= 0) {
|
||||
if (!c)
|
||||
match = node;
|
||||
node = node->rb_left;
|
||||
} else if (c > 0) {
|
||||
node = node->rb_right;
|
||||
}
|
||||
}
|
||||
|
||||
return match;
|
||||
}
|
||||
|
||||
/**
|
||||
* rb_next_match() - find the next @key in @tree
|
||||
* @key: key to match
|
||||
* @tree: tree to search
|
||||
* @cmp: operator defining node order
|
||||
*
|
||||
* Returns the next node matching @key, or NULL.
|
||||
*/
|
||||
static __always_inline struct rb_node *
|
||||
rb_next_match(const void *key, struct rb_node *node,
|
||||
int (*cmp)(const void *key, const struct rb_node *))
|
||||
{
|
||||
node = rb_next(node);
|
||||
if (node && cmp(key, node))
|
||||
node = NULL;
|
||||
return node;
|
||||
}
|
||||
|
||||
/**
|
||||
* rb_for_each() - iterates a subtree matching @key
|
||||
* @node: iterator
|
||||
* @key: key to match
|
||||
* @tree: tree to search
|
||||
* @cmp: operator defining node order
|
||||
*/
|
||||
#define rb_for_each(node, key, tree, cmp) \
|
||||
for ((node) = rb_find_first((key), (tree), (cmp)); \
|
||||
(node); (node) = rb_next_match((key), (node), (cmp)))
|
||||
|
||||
#endif /* _LINUX_RBTREE_H */
|
||||
313
utils/src/rbtree_augmented.h
Normal file
313
utils/src/rbtree_augmented.h
Normal file
@@ -0,0 +1,313 @@
|
||||
/* SPDX-License-Identifier: GPL-2.0-or-later */
|
||||
/*
|
||||
Red Black Trees
|
||||
(C) 1999 Andrea Arcangeli <andrea@suse.de>
|
||||
(C) 2002 David Woodhouse <dwmw2@infradead.org>
|
||||
(C) 2012 Michel Lespinasse <walken@google.com>
|
||||
|
||||
|
||||
linux/include/linux/rbtree_augmented.h
|
||||
*/
|
||||
|
||||
#ifndef _LINUX_RBTREE_AUGMENTED_H
|
||||
#define _LINUX_RBTREE_AUGMENTED_H
|
||||
|
||||
/*
|
||||
* Please note - only struct rb_augment_callbacks and the prototypes for
|
||||
* rb_insert_augmented() and rb_erase_augmented() are intended to be public.
|
||||
* The rest are implementation details you are not expected to depend on.
|
||||
*
|
||||
* See Documentation/core-api/rbtree.rst for documentation and samples.
|
||||
*/
|
||||
|
||||
struct rb_augment_callbacks {
|
||||
void (*propagate)(struct rb_node *node, struct rb_node *stop);
|
||||
void (*copy)(struct rb_node *old, struct rb_node *new);
|
||||
void (*rotate)(struct rb_node *old, struct rb_node *new);
|
||||
};
|
||||
|
||||
extern void __rb_insert_augmented(struct rb_node *node, struct rb_root *root,
|
||||
void (*augment_rotate)(struct rb_node *old, struct rb_node *new));
|
||||
|
||||
/*
|
||||
* Fixup the rbtree and update the augmented information when rebalancing.
|
||||
*
|
||||
* On insertion, the user must update the augmented information on the path
|
||||
* leading to the inserted node, then call rb_link_node() as usual and
|
||||
* rb_insert_augmented() instead of the usual rb_insert_color() call.
|
||||
* If rb_insert_augmented() rebalances the rbtree, it will callback into
|
||||
* a user provided function to update the augmented information on the
|
||||
* affected subtrees.
|
||||
*/
|
||||
static inline void
|
||||
rb_insert_augmented(struct rb_node *node, struct rb_root *root,
|
||||
const struct rb_augment_callbacks *augment)
|
||||
{
|
||||
__rb_insert_augmented(node, root, augment->rotate);
|
||||
}
|
||||
|
||||
static inline void
|
||||
rb_insert_augmented_cached(struct rb_node *node,
|
||||
struct rb_root_cached *root, bool newleft,
|
||||
const struct rb_augment_callbacks *augment)
|
||||
{
|
||||
if (newleft)
|
||||
root->rb_leftmost = node;
|
||||
rb_insert_augmented(node, &root->rb_root, augment);
|
||||
}
|
||||
|
||||
/*
|
||||
* Template for declaring augmented rbtree callbacks (generic case)
|
||||
*
|
||||
* RBSTATIC: 'static' or empty
|
||||
* RBNAME: name of the rb_augment_callbacks structure
|
||||
* RBSTRUCT: struct type of the tree nodes
|
||||
* RBFIELD: name of struct rb_node field within RBSTRUCT
|
||||
* RBAUGMENTED: name of field within RBSTRUCT holding data for subtree
|
||||
* RBCOMPUTE: name of function that recomputes the RBAUGMENTED data
|
||||
*/
|
||||
|
||||
#define RB_DECLARE_CALLBACKS(RBSTATIC, RBNAME, \
|
||||
RBSTRUCT, RBFIELD, RBAUGMENTED, RBCOMPUTE) \
|
||||
static inline void \
|
||||
RBNAME ## _propagate(struct rb_node *rb, struct rb_node *stop) \
|
||||
{ \
|
||||
while (rb != stop) { \
|
||||
RBSTRUCT *node = rb_entry(rb, RBSTRUCT, RBFIELD); \
|
||||
if (RBCOMPUTE(node, true)) \
|
||||
break; \
|
||||
rb = rb_parent(&node->RBFIELD); \
|
||||
} \
|
||||
} \
|
||||
static inline void \
|
||||
RBNAME ## _copy(struct rb_node *rb_old, struct rb_node *rb_new) \
|
||||
{ \
|
||||
RBSTRUCT *old = rb_entry(rb_old, RBSTRUCT, RBFIELD); \
|
||||
RBSTRUCT *new = rb_entry(rb_new, RBSTRUCT, RBFIELD); \
|
||||
new->RBAUGMENTED = old->RBAUGMENTED; \
|
||||
} \
|
||||
static void \
|
||||
RBNAME ## _rotate(struct rb_node *rb_old, struct rb_node *rb_new) \
|
||||
{ \
|
||||
RBSTRUCT *old = rb_entry(rb_old, RBSTRUCT, RBFIELD); \
|
||||
RBSTRUCT *new = rb_entry(rb_new, RBSTRUCT, RBFIELD); \
|
||||
new->RBAUGMENTED = old->RBAUGMENTED; \
|
||||
RBCOMPUTE(old, false); \
|
||||
} \
|
||||
RBSTATIC const struct rb_augment_callbacks RBNAME = { \
|
||||
.propagate = RBNAME ## _propagate, \
|
||||
.copy = RBNAME ## _copy, \
|
||||
.rotate = RBNAME ## _rotate \
|
||||
};
|
||||
|
||||
/*
|
||||
* Template for declaring augmented rbtree callbacks,
|
||||
* computing RBAUGMENTED scalar as max(RBCOMPUTE(node)) for all subtree nodes.
|
||||
*
|
||||
* RBSTATIC: 'static' or empty
|
||||
* RBNAME: name of the rb_augment_callbacks structure
|
||||
* RBSTRUCT: struct type of the tree nodes
|
||||
* RBFIELD: name of struct rb_node field within RBSTRUCT
|
||||
* RBTYPE: type of the RBAUGMENTED field
|
||||
* RBAUGMENTED: name of RBTYPE field within RBSTRUCT holding data for subtree
|
||||
* RBCOMPUTE: name of function that returns the per-node RBTYPE scalar
|
||||
*/
|
||||
|
||||
#define RB_DECLARE_CALLBACKS_MAX(RBSTATIC, RBNAME, RBSTRUCT, RBFIELD, \
|
||||
RBTYPE, RBAUGMENTED, RBCOMPUTE) \
|
||||
static inline bool RBNAME ## _compute_max(RBSTRUCT *node, bool exit) \
|
||||
{ \
|
||||
RBSTRUCT *child; \
|
||||
RBTYPE max = RBCOMPUTE(node); \
|
||||
if (node->RBFIELD.rb_left) { \
|
||||
child = rb_entry(node->RBFIELD.rb_left, RBSTRUCT, RBFIELD); \
|
||||
if (child->RBAUGMENTED > max) \
|
||||
max = child->RBAUGMENTED; \
|
||||
} \
|
||||
if (node->RBFIELD.rb_right) { \
|
||||
child = rb_entry(node->RBFIELD.rb_right, RBSTRUCT, RBFIELD); \
|
||||
if (child->RBAUGMENTED > max) \
|
||||
max = child->RBAUGMENTED; \
|
||||
} \
|
||||
if (exit && node->RBAUGMENTED == max) \
|
||||
return true; \
|
||||
node->RBAUGMENTED = max; \
|
||||
return false; \
|
||||
} \
|
||||
RB_DECLARE_CALLBACKS(RBSTATIC, RBNAME, \
|
||||
RBSTRUCT, RBFIELD, RBAUGMENTED, RBNAME ## _compute_max)
|
||||
|
||||
|
||||
#define RB_RED 0
|
||||
#define RB_BLACK 1
|
||||
|
||||
#define __rb_parent(pc) ((struct rb_node *)(pc & ~3))
|
||||
|
||||
#define __rb_color(pc) ((pc) & 1)
|
||||
#define __rb_is_black(pc) __rb_color(pc)
|
||||
#define __rb_is_red(pc) (!__rb_color(pc))
|
||||
#define rb_color(rb) __rb_color((rb)->__rb_parent_color)
|
||||
#define rb_is_red(rb) __rb_is_red((rb)->__rb_parent_color)
|
||||
#define rb_is_black(rb) __rb_is_black((rb)->__rb_parent_color)
|
||||
|
||||
static inline void rb_set_parent(struct rb_node *rb, struct rb_node *p)
|
||||
{
|
||||
rb->__rb_parent_color = rb_color(rb) | (unsigned long)p;
|
||||
}
|
||||
|
||||
static inline void rb_set_parent_color(struct rb_node *rb,
|
||||
struct rb_node *p, int color)
|
||||
{
|
||||
rb->__rb_parent_color = (unsigned long)p | color;
|
||||
}
|
||||
|
||||
static inline void
|
||||
__rb_change_child(struct rb_node *old, struct rb_node *new,
|
||||
struct rb_node *parent, struct rb_root *root)
|
||||
{
|
||||
if (parent) {
|
||||
if (parent->rb_left == old)
|
||||
WRITE_ONCE(parent->rb_left, new);
|
||||
else
|
||||
WRITE_ONCE(parent->rb_right, new);
|
||||
} else
|
||||
WRITE_ONCE(root->rb_node, new);
|
||||
}
|
||||
|
||||
static inline void
|
||||
__rb_change_child_rcu(struct rb_node *old, struct rb_node *new,
|
||||
struct rb_node *parent, struct rb_root *root)
|
||||
{
|
||||
if (parent) {
|
||||
if (parent->rb_left == old)
|
||||
rcu_assign_pointer(parent->rb_left, new);
|
||||
else
|
||||
rcu_assign_pointer(parent->rb_right, new);
|
||||
} else
|
||||
rcu_assign_pointer(root->rb_node, new);
|
||||
}
|
||||
|
||||
extern void __rb_erase_color(struct rb_node *parent, struct rb_root *root,
|
||||
void (*augment_rotate)(struct rb_node *old, struct rb_node *new));
|
||||
|
||||
static __always_inline struct rb_node *
|
||||
__rb_erase_augmented(struct rb_node *node, struct rb_root *root,
|
||||
const struct rb_augment_callbacks *augment)
|
||||
{
|
||||
struct rb_node *child = node->rb_right;
|
||||
struct rb_node *tmp = node->rb_left;
|
||||
struct rb_node *parent, *rebalance;
|
||||
unsigned long pc;
|
||||
|
||||
if (!tmp) {
|
||||
/*
|
||||
* Case 1: node to erase has no more than 1 child (easy!)
|
||||
*
|
||||
* Note that if there is one child it must be red due to 5)
|
||||
* and node must be black due to 4). We adjust colors locally
|
||||
* so as to bypass __rb_erase_color() later on.
|
||||
*/
|
||||
pc = node->__rb_parent_color;
|
||||
parent = __rb_parent(pc);
|
||||
__rb_change_child(node, child, parent, root);
|
||||
if (child) {
|
||||
child->__rb_parent_color = pc;
|
||||
rebalance = NULL;
|
||||
} else
|
||||
rebalance = __rb_is_black(pc) ? parent : NULL;
|
||||
tmp = parent;
|
||||
} else if (!child) {
|
||||
/* Still case 1, but this time the child is node->rb_left */
|
||||
tmp->__rb_parent_color = pc = node->__rb_parent_color;
|
||||
parent = __rb_parent(pc);
|
||||
__rb_change_child(node, tmp, parent, root);
|
||||
rebalance = NULL;
|
||||
tmp = parent;
|
||||
} else {
|
||||
struct rb_node *successor = child, *child2;
|
||||
|
||||
tmp = child->rb_left;
|
||||
if (!tmp) {
|
||||
/*
|
||||
* Case 2: node's successor is its right child
|
||||
*
|
||||
* (n) (s)
|
||||
* / \ / \
|
||||
* (x) (s) -> (x) (c)
|
||||
* \
|
||||
* (c)
|
||||
*/
|
||||
parent = successor;
|
||||
child2 = successor->rb_right;
|
||||
|
||||
augment->copy(node, successor);
|
||||
} else {
|
||||
/*
|
||||
* Case 3: node's successor is leftmost under
|
||||
* node's right child subtree
|
||||
*
|
||||
* (n) (s)
|
||||
* / \ / \
|
||||
* (x) (y) -> (x) (y)
|
||||
* / /
|
||||
* (p) (p)
|
||||
* / /
|
||||
* (s) (c)
|
||||
* \
|
||||
* (c)
|
||||
*/
|
||||
do {
|
||||
parent = successor;
|
||||
successor = tmp;
|
||||
tmp = tmp->rb_left;
|
||||
} while (tmp);
|
||||
child2 = successor->rb_right;
|
||||
WRITE_ONCE(parent->rb_left, child2);
|
||||
WRITE_ONCE(successor->rb_right, child);
|
||||
rb_set_parent(child, successor);
|
||||
|
||||
augment->copy(node, successor);
|
||||
augment->propagate(parent, successor);
|
||||
}
|
||||
|
||||
tmp = node->rb_left;
|
||||
WRITE_ONCE(successor->rb_left, tmp);
|
||||
rb_set_parent(tmp, successor);
|
||||
|
||||
pc = node->__rb_parent_color;
|
||||
tmp = __rb_parent(pc);
|
||||
__rb_change_child(node, successor, tmp, root);
|
||||
|
||||
if (child2) {
|
||||
rb_set_parent_color(child2, parent, RB_BLACK);
|
||||
rebalance = NULL;
|
||||
} else {
|
||||
rebalance = rb_is_black(successor) ? parent : NULL;
|
||||
}
|
||||
successor->__rb_parent_color = pc;
|
||||
tmp = successor;
|
||||
}
|
||||
|
||||
augment->propagate(tmp, NULL);
|
||||
return rebalance;
|
||||
}
|
||||
|
||||
static __always_inline void
|
||||
rb_erase_augmented(struct rb_node *node, struct rb_root *root,
|
||||
const struct rb_augment_callbacks *augment)
|
||||
{
|
||||
struct rb_node *rebalance = __rb_erase_augmented(node, root, augment);
|
||||
if (rebalance)
|
||||
__rb_erase_color(rebalance, root, augment->rotate);
|
||||
}
|
||||
|
||||
static __always_inline void
|
||||
rb_erase_augmented_cached(struct rb_node *node, struct rb_root_cached *root,
|
||||
const struct rb_augment_callbacks *augment)
|
||||
{
|
||||
if (root->rb_leftmost == node)
|
||||
root->rb_leftmost = rb_next(node);
|
||||
rb_erase_augmented(node, &root->rb_root, augment);
|
||||
}
|
||||
|
||||
#endif /* _LINUX_RBTREE_AUGMENTED_H */
|
||||
34
utils/src/rbtree_types.h
Normal file
34
utils/src/rbtree_types.h
Normal file
@@ -0,0 +1,34 @@
|
||||
/* SPDX-License-Identifier: GPL-2.0-or-later */
|
||||
#ifndef _LINUX_RBTREE_TYPES_H
|
||||
#define _LINUX_RBTREE_TYPES_H
|
||||
|
||||
struct rb_node {
|
||||
unsigned long __rb_parent_color;
|
||||
struct rb_node *rb_right;
|
||||
struct rb_node *rb_left;
|
||||
} __attribute__((aligned(sizeof(long))));
|
||||
/* The alignment might seem pointless, but allegedly CRIS needs it */
|
||||
|
||||
struct rb_root {
|
||||
struct rb_node *rb_node;
|
||||
};
|
||||
|
||||
/*
|
||||
* Leftmost-cached rbtrees.
|
||||
*
|
||||
* We do not cache the rightmost node based on footprint
|
||||
* size vs number of potential users that could benefit
|
||||
* from O(1) rb_last(). Just not worth it, users that want
|
||||
* this feature can always implement the logic explicitly.
|
||||
* Furthermore, users that want to cache both pointers may
|
||||
* find it a bit asymmetric, but that's ok.
|
||||
*/
|
||||
struct rb_root_cached {
|
||||
struct rb_root rb_root;
|
||||
struct rb_node *rb_leftmost;
|
||||
};
|
||||
|
||||
#define RB_ROOT (struct rb_root) { NULL, }
|
||||
#define RB_ROOT_CACHED (struct rb_root_cached) { {NULL, }, NULL }
|
||||
|
||||
#endif
|
||||
Reference in New Issue
Block a user