Zach Brown c313b71b2e Process client lock messages in ordered work
The lock client has a requirement that it can't handle some messages
being processed out of order.  Previously it had detected message
ordering itself, but had missed some cases.  Recieve processing was then
changed to always call lock message processing from the recv work to
globally order all lock messages.

This inline processing was contributing to excessive latencies in making
our way through the incoming receive queue, delaying work that would
otherwise be parallel once we got it off the recv queue.

This was seen in practice as a giant flood of lock shrink messages
arrived at the client.  It processed each in turn, starving a statfs
response long enough to trigger the hung task warning.

This fix does two things.

First, it moves ordered recv processing out of the recv work.  It lets
the recv work drain the socket quickly and turn it into a list that the
ordered work is consuming.  Other messages will have a chance to be
received and queued to their processing work without having to wait for
the ordered work to be processed.

Secondly, it adds parallelism to the ordered processing.  The incoming
lock messages don't need global ordering, they need ordering within each
lock.  We add an arbitrary but reasonable number of ordered workers and
hash lock messages to each worker based on the lock's key.

Signed-off-by: Zach Brown <zab@versity.com>
2025-10-22 11:18:30 -07:00
2020-12-07 09:47:12 -08:00
2020-12-07 10:39:20 -08:00
2021-11-05 11:16:57 -07:00
2025-06-03 13:35:42 -07:00

Introduction

scoutfs is a clustered in-kernel Linux filesystem designed to support large archival systems. It features additional interfaces and metadata so that archive agents can perform their maintenance workflows without walking all the files in the namespace. Its cluster support lets deployments add nodes to satisfy archival tier bandwidth targets.

The design goal is to reach file populations in the trillions, with the archival bandwidth to match, while remaining operational and responsive.

Highlights of the design and implementation include:

  • Fully consistent POSIX semantics between nodes
  • Atomic transactions to maintain consistent persistent structures
  • Integrated archival metadata replaces syncing to external databases
  • Dynamic seperation of resources lets nodes write in parallel
  • 64bit throughout; no limits on file or directory sizes or counts
  • Open GPLv2 implementation

Community Mailing List

Please join us on the open scoutfs-devel@scoutfs.org mailing list hosted on Google Groups

Description
No description provided
Readme 6.7 MiB
Languages
C 87.2%
Shell 9.1%
Roff 2.5%
TeX 0.9%
Makefile 0.3%